检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
横向比较提示词效果 设置候选提示词 横向比较提示词效果 父主题: 提示词工程
进阶技巧 设置背景及人设 理解底层任务 CoT思维链 考察模型逻辑 父主题: 提示词写作实践
提示词比较支持选择两个候选提示词对其文本和参数进行比较,支持对选择的候选提示词设置相同变量值查看效果。 提示词评估 提示词评估以任务维度管理,支持评估任务的创建、查询、修改、删除。支持创建评估任务,选择候选提示词和需要使用的变量数据集,设置评估算法,执行任务自动化对候选提示词生成结果和结果评估。 提示词管理
学习率设置得过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置得过小
roject_id}/deployments/{deployment_id} (/chat/completions在SDK代码中已经进行了设置)。 IAM endpoint需要根据服务所在的区域正确配置,参考帮助文档“终端节点”章节查找。 参考IAM帮助文档,获取账号相关信息。 华为云Gallery托管三方模型
注册边缘资源池节点 进入ModelArts服务,选择所需空间。 在左侧列表中单击“边缘资源池”,在“节点”页签中,单击“创建”。 在“创建边缘节点”页面中,填写节点名称,配置AI加速卡与日志信息,单击“确定”。 如果节点有npu设备需选择“AI加速卡 > Ascend”,并选择加速卡类型。
准确又及时的答案。 登录盘古大模型套件平台,在左侧导航栏中选择“能力调测”。 单击“多轮对话”页签,选择使用N2系列模型,在页面右侧“参数设置”中可以开启搜索增强功能。 图1 体验搜索增强能力
务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。 实例化Tool 实例化Agent 运行Agent 监听Agent Agent流式输出 Tool Retriever 父主题:
务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。 实例化Tool 实例化Agent 运行Agent 监听Agent Agent效果优化 Agent流式输出 Tool Retriever
式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback 事件流回调 */ void setStreamCal
Step的返回进行修改。 通过监听终止Agent的执行 当需要在Agent的执行过程中终止执行时,除了通过setMaxIterations设置Agent的最大迭代次数,也可以通过实现监听器的onCheckInterruptRequirement实现。 agent.addListener(new
为Agnet的执行状态。 通过监听终止Agent的执行 当需要在Agent的执行过程中终止执行时,除了通过setMaxIterations设置Agent的最大迭代次数,也可以通过实现监听器的on_check_interrupt_requirement实现。 class Inter
DocSummaryMapReduceSkill from pangukitsappdev.api.llms.factory import LLMs # 设置SDK使用的配置文件 os.environ["SDK_CONFIG_PATH"] = "./llm.properties" # 初始化文档问答Skill
量差,或学习率设置过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或减小学习率来解决。 图4 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss曲线平缓且保持高位不下降的原因可能是目标任务的难度较大,或模型的学习率设置过小,导致模型
directory”报错,表示当前数据集格式、数据命名、数据存储路径不满足训练要求。 解决方案:请参考数据格式要求校验数据集格式。 请检查数据集路径是否设置正确。 图2 no such file or directory报错 The dataset size is too small报错 报错
话题重复度控制(presence_penalty) -2~2 0 话题重复度控制主要用于控制模型输出的话题重复程度。 参数设置正值,模型倾向于生成新的、未出现过的内容;参数设置负值,倾向于生成更加固定和统一的内容。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。 为
用户已经提供了公司名称"方欣科技有限公司",并指定了时间范围为今年1月。我将设置"report_type"为"经营异常风险检测",并将"skssqq"设置为"2024-01-01","skssqz"设置为"2024-01-31"。现在,我将调用工具。 行动:使用工具[risk_detection]
从已有数据导入:从已有的数据集中选择数据用于模型训练效果评估,如果数据超过100条,会取前100条数据。 图2 从训练数据拆分 完成训练任务基本信息。设置模型的名称、描述以及订阅提醒。 设置订阅提醒后,模型训练和部署过程产生的事件可以通过手机或邮箱发送给用户。 图3 基本信息 单击“立即创建”,创建有监督微调训练任务。
查看对应编程语言类型的SDK代码。 图1 获取SDK代码示例 当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输入参数时,deployment_id为模型部署ID,可以在盘古大模型套件平台“服务管理”功能中获取。 图3 服务管理 图4
import LLMParamConfig from pangukitsappdev.api.llms.factory import LLMs # 设置SDK使用的配置文件 os.environ["SDK_CONFIG_PATH"] = "./llm.properties" # 初始化LLMs