检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用OBS客户端上传文件的操作指导:上传文件 方法一:在Notebook中通过Moxing上传下载OBS文件 MoXing是ModelArts自研的分布式训练加速框架,构建于开源的深度学习引擎TensorFlow、PyTorch等之上,使用MoXing API可让模型代码的编写更加简单、高效。
summary可能是本地缓存,在每次触发flush时将该summary文件覆盖OBS上的原文件。当超过5GB后,由于达到了OBS单次导入文件大小的上限,导致无法继续写入。 处理方法 如果在运行训练作业的过程中出现该问题,建议处理方法如下: 推荐使用本地缓存的方式来解决,使用如下方法:
性能不佳,因此需要在保留AOE知识库的情况下,再次进行转换,以达到较优性能。 删除编译缓存atc_data。 注意相比第一次清除缓存操作,本次保留了AOE知识库。 #shell # 删除编译缓存。 rm -rf /root/atc_data/* 再次执行模型转换命令,确保AOE能够命中知识库。
多机多卡:大数据量(1T训练数据)、高算力场景(4台8卡Vnt1),存储方案推荐使用“SFS(存放数据)+普通OBS桶(存放代码)”,采用分布式训练。 当使用SFS+OBS的存储方案可以实现存储加速,该方案的端到端实践案例请参见面向AI场景使用OBS+SFS Turbo的存储加速实践。
目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务。另外,当启动服务时的模型或者参数发生改变时,请删除
目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务。另外,当启动服务时的模型或者参数发生改变时,请删除
目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务。另外,当启动服务时的模型或者参数发生改变时,请删除
过程的规模和计算需求 overwrite_cache true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理
通过重写pandas源码API的方式,将该API改造成支持OBS路径的形式。 写h5到OBS = 写h5到本地缓存 + 上传本地缓存到OBS + 删除本地缓存 从OBS读h5 = 下载h5到本地缓存 + 读取本地缓存 + 删除本地缓存 即将以下代码写在运行脚本的最前面,就能使运行过程中的to_hdf和read_hdf支持OBS路径。
过程的规模和计算需求 overwrite_cache true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理
查询服务更新日志 功能介绍 查询实时服务更新日志。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/services/{service_id}/logs
目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务。另外,当启动服务时的模型或者参数发生改变时,请删除
目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务。另外,当启动服务时的模型或者参数发生改变时,请删除
过程的规模和计算需求 overwrite_cache true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理
查询APP的API认证信息 功能介绍 查询APP的API认证信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/serv
支持多卡训练),对应值可选择multiple(支持)、singular(不支持); host_distributed_mode(是否支持分布式训练),对应值可选择multiple(支持)、singular(不支持)。 values 否 Array of strings 资源约束键对应值。
过程的规模和计算需求 overwrite_cache true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理
调度延迟,适用于对CPU缓存和调度延迟敏感的场景。关闭绑核表示关闭工作负载实例独占CPU的功能,优点是CPU共享池可分配的核数较多。也可关闭系统默认绑核后,在业务容器中用taskset等方式进行灵活绑核。 Dropcache:开启后表示启用Linux的缓存清理功能,是一种应用性能
device” 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下。 磁盘空间不足。 分布式作业时,有些节点的docker base size配置未生效,容器内“/”根目录空间未达到50G,只有默认的10GB,导致作业训练失败。 实际存储空间足够,却依旧报错“No
过程的规模和计算需求 overwrite_cache true 用于指定是否覆盖缓存。如果设置为"overwrite_cache",则在训练过程中覆盖缓存。这通常在数据集发生变化,或者需要重新生成缓存时使用 preprocessing_num_workers 16 用于指定预处理