检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建AI应用 功能介绍 导入元模型创建AI应用。 执行代码、模型需先上传至OBS(训练作业生成的模型已默认存储到OBS)。 接口约束 使用模板导入模型与不使用模板导入这两类导入方式的Body参数要求不一样。以下Body参数说明中以模板参数表示适合使用模板导入模型时填写的参数,非模
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
(可选)本地服务器安装ModelArts SDK 如果需要在个人PC或虚拟机上使用ModelArts SDK,则需要在本地环境中安装ModelArts SDK,安装后可直接调用ModelArts SDK轻松管理数据集、创建ModelArts训练作业及创建AI应用,并将其部署为在线服务。
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
Step6 推理服务的高阶配置(可选) 如需开启以下高阶配置,请在Step3 配置NPU环境时增加需要开启的高阶配置参数。 词表切分 在分布式场景下,默认不使用词表切分能提升推理性能,同时也会增加单卡的显存占用。不建议开启词表并行,如确需使用词表切分,配置以下环境变量。 export
参数类型 描述 add_sample_count Integer 新增样本数量。 analysis_cache_path String 特征分析的缓存路径。 analysis_status Integer 特征分析任务的当前状态。可选值如下: 0:初始化 1:运行中 2:完成 3:失败 analysis_task_id
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B
创建开发环境实例 功能介绍 创建开发环境实例,用于代码开发。 该接口为异步操作,创建开发环境实例的状态请通过查询开发环境实例详情接口获取。 URI POST /v1/{project_id}/demanager/instances 参数说明如表1所示。 表1 参数说明 参数 是否必选
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
规格 选择规格,规格中描述了服务器类型、型号等信息,仅显示模型支持的资源。 计算节点个数 当计算节点个数大于1,将启动多节点分布式训练。详细信息,请参见分布式训练功能介绍。 更多选项 永久保存日志 选择是否打开“永久保存日志”开关。 开关关闭(默认关闭):表示不永久保存日志,则任务
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua
推理精度测试 本章节介绍如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua
不同规格、镜像对IPv6支持的情况不同,若不支持则不会显示IPv6网络参数,请以控制台实际显示为准。 RoCE网络 当前使用A系列GPU时,进行分布式训练为了将硬件上的RoCE网卡使用起来,需要配置RoCE网络。 该参数与所选规格有关,若未选中规格或规格不支持RoCE网络,则不显示。 若
功能总览 功能总览 全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习
属性 描述 是否必填 数据类型 flavor 资源规格 是 Placeholder node_count 节点个数,默认为1,多节点表示支持分布式 否 int、Placeholder 表12 SchedulePolicy 属性 描述 是否必填 数据类型 priority 作业调度的优