检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自然语言处理套件提供了通用文本分类工作流,您可以通过预置的工作流,自主上传训练数据,训练高精度的文本预测分类模型,适配不同行业场景的业务数据,快速获得定制服务。 图1 使用预置工作流开发应用 表1 使用预置工作流开发应用流程 流程 说明 详细指导 选择自然语言处理套件 根据您的实际使用需求选择自然语言处理套
删除技能 如果已创建的应用不再使用,您可以删除应用释放资源。 操作步骤 登录华为HiLens管理控制台,在左侧导航栏选择“技能开发>技能管理”。 默认进入“基础技能”页签。 单击“可训练技能”,切换至“可训练技能”页签。 选择技能单击操作列的“删除”,确认信息后单击“确定”,删除技能。
GiB”,适合纯CPU类型的负载运行的模型。 如果资源池选择专属资源池,勾选自己在ModelArts创建的专属资源池。 计算节点个数 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。请根据实际编码情况选择计算模式。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
在商品识别场景下,如果上传的数据包含未标注数据,您需要创建SKU,即商品各类单品的图片,方便后续针对数据集中的数据进行自动标注。 如果数据集是已标注数据,您可以选择不创建SKU,直接执行下一步。 创建SKU 标注数据 针对已经选择的数据和SKU,在应用开发的“数据标注”页面,ModelArts
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
相是指成分和组织均匀统一的物质部分,金属材料中,一般除了基体相外,还会存在许多的第二相。而第二相对整个金属材料的影响也是巨大的。在钢铁或其下游企业,常需要对钢铁显微成像的金相图片第二相面积含量进行测定。ModelArts Pro提供第二相面积含量测定工作流,能快速准确的返回第二相面积含量测定结果。
针对场景领域提供预训练模型,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。 通用实体抽取工作流 功能介绍 支持自主上传文本数据,构建高精度实体抽取模型,适配不同行业场景的业务数据,快速获得定制服务。 适用场景 知
统自动旋转文字方向不正确的图片,保持图片中的文字方向正确。 单击预处理区域左上方的操作图标,调整模板图片的大小、方向等。 :单击图标重置图片为初始状态,即未进行任何处理的状态。 :单击图标,在“图片裁剪”窗口调整图片裁剪范围,然后单击“裁剪”,调整图片的大小。 :单击图标,在“图
统自动旋转文字方向不正确的图片,保持图片中的文字方向正确。 单击预处理区域左上方的操作图标,调整模板图片的大小、方向等。 :单击图标重置图片为初始状态,即未进行任何处理的状态。 :单击图标,在“图片裁剪”窗口调整图片裁剪范围,然后单击“裁剪”,调整图片的大小。 :单击图标,在“图
单击框选操作图标,单击待识别文字的左上角,移动鼠标框选识别区,使得矩形框覆盖待识别的文字。 框选识别区应尽量扩大识别区范围,使所框选识别区覆盖字段值可能出现的区域。 在右侧“框选识别区”中填写“框选字段”,选择“字段类型”。 “字段类型”指待识别文字的内容,您可以在默认字段类型中选择,当前可选择的默认字段
对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。 如果需要多个提取规则,单击新增提取规则。提取时按从上到下优先级规则提取,选择第一个非空的提取内容作为提取后的内容。 后处理 根据实际情况,对经过“提取”后的文字进行“后处理”。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于分类自己所上传的文字内容,也可直接调用对应的API。 部署服务 父主题: 多语种文本分类工作流