检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
合规性和安全性:安全运营人员可以根据应用数据的敏感度对资源配置标签,确保应用和数据遵循相应的安全和隐私法规,或内部/外部的审计需求。 协助故障排除:运维人员可以利用标签快速定位受影响的资源,加速问题的诊断和解决过程。 协助自动化运维:运维人员可以根据标准化的标签来编写脚本或配置规则,实现自动化任务。比如,自
目的端检查:通知云厂家进行资源日常状态的巡检和高可用性检查。另外目的端切换后就是正式生产环境,要确保告警、监控、日志、安全策略均已完成配置并做最后一次检查和确认。 正向迁移任务的状态检查:系统切换前通常迁移任务已经创建完成,并在增量同步状态中,确保迁移任务的增量同步状态正常,无异常报错或告警。
障相互隔离。企业可在此基础上构建如下场景的高可用体系: 单AZ部署:通常情况云上不建议单AZ部署,除非是对时延特别敏感的业务,无法接受同Region的AZ间时延,这种情况可以考虑单AZ部署,利用云服务主备、集群化部署模式来满足单个业务节点故障时快速恢复业务的需求,主要利用集群内节
业务变化。如在进行一些促销活动时,对资源的需求往往比正常要高出多倍,这时企业在云上就可以通过可视化界面或者 OpenAPI 快速升级资源的配置,将资源调整到更高规格的实例上(如更多的 CPU、内存、带宽、磁盘空间等),以应对活动的流量冲击;而在活动过后,又可以将规格收缩回原来的规格,达到降低成本的目的。
根据不同场景选择不同的解决方法,并且结合多种方法,这样可以更容易地找到一种与需求符合的方法; 不断迭代的方法,使用数据驱动来优化资源类型和配置选项的选择; 性能度量 设置性能度量和监控指标,以捕获关键的性能指标; 使用可视化技术呈现性指标和性能问题(如:异常状态、低利用率等); 性能监测
间、资源利用率、并发性等。通过监测作业的执行指标和性能指标,可以评估迁移后的作业性能是否符合预期。如果作业的性能有问题,可能需要调整作业的配置参数、优化作业代码或考虑资源调配的问题。 在作业验证过程中,可以使用监控工具、日志分析和数据校验等手段,确保迁移后的大数据任务的可靠性和稳定性。
地理冗余:将不同的AZ部署在不同的地理位置,可以防止地区范围的故障,例如自然灾害或电力中断对整个系统的影响。 企业可以基于AZ故障域进行应用的高可用性署设计,设计时可以考虑如下方面: 跨AZ部署:将应用程序的不同组件部署在多个AZ中,以确保即使一个AZ不可用,其他AZ中部署的组件仍能正常
了解过去6个月各企业项目的原始成本月度数据。 按区域汇总的月度成本 了解过去6个月按照区域汇总的原始成本月度数据。 ECS的月度按需成本和使用量 了解过去6个月云主机每月按需原始成本和按需使用量情况。 容器成本洞察 了解CCE集群、命名空间、工作负载粒度的成本分布和趋势。 父主题:
应用架构设计 应用部署架构概述 可用性设计 可扩展性设计 性能设计 应用部署参考架构 父主题: 方案设计
设计原则 大数据的部署架构设计包括大数据集群、大数据任务调度平台和大数据应用,其中大数据应用的部署架构请参考应用架构设计。 图1 大数据架构设计分类 大数据架构设计同样要考虑架构设计的6要素: 成本 可用性 安全性 可扩展性 可运维性 性能 图2 架构设计6要素 父主题: 大数据架构设计
大数据迁移 调研 设计 部署 迁移 验证 切换 保障 父主题: 采用实施
应用迁移上云 应用迁移上云简介 设计迁移方案 设计切换方案 设计Runbook 部署 迁移 验证 切换 保障 父主题: 采用实施
应用系统调研 调研应用全景图 调研应用部署架构 调研应用关联关系 调研应用上云需求 父主题: 调研评估
调研任务调度平台支持的任务类型,包括Jar类任务、SQL类任务、脚本类任务(Python、Shell)等。 调研任务调度平台是否提供可视化和管理界面,以方便任务调度的配置、监控和管理。 了解任务调度平台的容错机制,包括任务失败后的重试机制、故障恢复策略等。 调研数据流: 调研大数据平台及业务的架构图及数据流图,如下图:
采用实施 概述 组建实施团队 基础设施部署 应用迁移上云 大数据迁移 应用现代化 云上创新 采用实施的反模式
物联网 物联网是指将各种物理设备和传感器与互联网连接起来,实现设备之间的通信和数据交换。以下是物联网如何使能业务创新、与业务结合并推动业务现代化的几个方面: 智能家居和智慧城市:物联网技术可以将家居设备、城市基础设施和公共服务连接起来,实现智能化管理和优化资源利用。通过物联网,人
大数据参考架构 下图是典型的大数据架构,从数据集成、存储、计算、调度、查询和应用,构成了一个完整的数据流。 图1 大数据参考架构 大数据架构通常包括以下几个核心组件和流程,企业可以根据实际需要选择云服务或自建大数据组件: 业务数据源: 业务数据源是大数据平台的数据输入来源,可以是
成本和可运维性遵循基础环境的设计进行适配即可。 大数据架构设计:大数据的部署架构设计包括大数据集群部署架构设计、大数据任务调度平台部署架构设计和大数据应用部署架构设计,其中大数据应用的部署架构可以参考应用部署架构的设计方法。大数据架构设计同样要考虑架构设计的6要素。 在做云上架构
图所示。在这种运营模式中,所有业务系统都由专门的应用团队独立运营,应用团队不仅负责应用的设计、开发、测试、部署和运维工作,还需要负责业务系统所需IaaS和PaaS资源的部署和运维,同时要确保业务系统的安全性和云资源的成本管理。中心IT团队仅负责制定统一IT标准和IT流程,通过发文
ganizations服务构建一个清晰、有序、易于管理的云上组织架构,然后将企业的不同业务单元(如子公司、业务系统、产品线、部门、项目等)部署在各自独立的云账号中。这种方式不仅能够与公司现有的治理架构完美匹配,还能够实现高效的故障和安全隔离,将单个业务单元的故障和风险限制在其自身的范围内,减少“减少爆炸半径”。