检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本 ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation
在Notebook列表,单击某个Notebook实例操作栏的“更多 > 变更镜像”,在变更镜像窗口选择新的镜像,单击“确定”。 图1 变更镜像 在镜像窗口选择新的镜像,单击“确定”,变更成功后,在Notebook列表页的镜像栏,可以查看到变更后的镜像。 变更Notebook实例运行规格 ModelArts
├──awq # W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──llm_evaluation # 推理评测代码包 ├──benchmark_tools #性能评测
W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本 ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation
为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 修改目录权限,上传代码和数据到宿主机时使用的是root用户,如用ma-user用户训练,此处需要执行如下命令统一文件权限。
alpaca_gpt4_data.json # 微调数据文件 注意:多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
ModelArts预置镜像更新说明 本章节提供了ModelArts预置镜像的变更说明 ,比如依赖包的变化,方便用户感知镜像能力的差异,减少镜像使用问题。 统一镜像更新说明 表1 统一镜像更新说明 镜像名称 更新时间 更新说明 mindspore_2.3.0-cann_8.0.rc1-py_3
即Step3 上传代码包和权重文件上传的HuggingFace权重文件存放目录。若使用了量化功能,则使用推理模型量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后拒绝访问。
Code中查看远端日志 在VS Code环境中执行Ctrl+Shift+P 搜show logs 选择Remote Server。 也可在如下截图的红框处切换至其他的Log 父主题: VS Code使用技巧
on" } ] } 数据域迁移算子(CycleGan算子) 基于CycleGAN用于生成域迁移的图像,即将一类图片转换成另一类图片,把X空间中的样本转换成Y空间中的样本。CycleGAN可以利用非成对数据进行训练。模型训练时运行支持两个输入,分别代表数据的原域和目标域,在训
模型为从对象存储(OBS)导入的:此时对body的要求会在推理代码中体现,具体在推理代码的_preprocess方法中,该方法将输入的http body转换成模型期望的输入,具体的指导可以查看文档:模型推理代码编写说明。 模型从AI Gallery中获取的:请查看AI Gallery中的调用说明或者咨询该模型的提供方。
款”。 虚拟私有云和子网和Server资源的网络保持一致。 配置SNAT规则。 SNAT功能通过绑定弹性公网IP,实现私有IP向公有IP的转换,可实现VPC内跨可用区的多个云主机共享弹性公网IP、安全高效地访问互联网。 公网NAT网关页面,单击创建的NAT网关名称,进入NAT网关详情页。
W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本 ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation
lm_tools/spec_decode文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址
杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换。配合ModelArts提供的云化容器资源使用,可以更加快速、高效的进行AI开发与模型实验的迭代等。
rsionAcl obs:bucket:PutBucketAcl obs:object:PutObjectAcl 从OBS导入模型。 模型转换指定OBS路径。 按需配置。 表2 部署上线所需权限 业务场景 依赖的服务 依赖策略项 支持的功能 配置建议 部署服务 ModelArts
|── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建
介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch
|── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建
Step3 上传代码包和权重文件上传的HuggingFace权重文件存放目录。如果使用了量化功能,则使用推理模型量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。