检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.0-py3-none-any.whl # 推理安装包
com/ascend/MindSpeed.git cd MindSpeed git checkout 4ea42a23 cd .. 完整的源码目录结构如下: |——AscendCloud-LLM |──llm_train # 模型训练代码包
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 git clone -b v0.2.5 https://github.com/casper-hansen/AutoAWQ.git AutoAWQ-0
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包
├──llm_inference # 推理代码 ├──ascend_vllm ├── vllm_npu # 推理源码 ├── ascend_vllm-0.6.3-py3-none-any.whl # 推理安装包
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在Notebook中运行以下命令下载并安装AutoAWQ源码。 git clone -b v0.2.5 https://github.com/casper-hansen/AutoAWQ.git AutoAWQ-0
com/ascend/MindSpeed.git cd MindSpeed git checkout 4ea42a23 cd .. 完整的源码目录结构如下: |——AscendCloud-LLM |──llm_train # 模型训练代码包
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate awq pip
求请参见安装文件规范。 安装文件规范 请根据依赖包的类型,在代码目录下放置对应文件: 依赖包为开源安装包时 暂时不支持直接从github的源码中安装。 在“代码目录”中创建一个命名为“pip-requirements.txt”的文件,并且在文件中写明依赖包的包名及其版本号,格式为“包名==版本号”。
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate awq pip
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate awq pip
脚本中添加收集Summary相关代码。 TensorFlow引擎的训练脚本中添加Summary代码,具体方式请参见TensorFlow官方网站。 注意事项 运行中的可视化作业不单独计费,当停止Notebook实例时,计费停止。 Summary文件数据如果存放在OBS中,由OBS单
M-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate awq pip
Spore-Lite迁移路线进行介绍。使用ascend-vllm路线的迁移指导会在后续提供,您可以从上面的案例中下载相关代码并直接参考实现源码。 父主题: GPU推理业务迁移至昇腾的通用指导
dir}/aigc_inference/torch_npu/,目录结构如下: 步骤五:下载ComfyUI代码并安装依赖 下载ComfyUI源码 从github下载ComfyUI代码并切换到0.2.2分支。 cd ${container_work_dir} git clone -c
/home_host/work/pipeline cd /home_host/work/pipeline 将onnx pipeline依赖的图生图源码“pipeline_onnx_stable_diffusion_img2img.py”复制到该目录下,名称改为“pipeline_onnx
例,对适配过程需要修改的部分进行说明。并且针对单卡环境以及单机多卡deepspeed环境提供训练脚本。无特别说明,以ChatGLM-6B源代码根目录作为当前目录。 自动迁移适配 修改“ptuning/main.py”,添加deepspeed_npu、torch_npu、trans