检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_id String 模型id。 model_source String 模型来源。auto:自动学习;algos:预置算法;custom:自定义。 install_type Array of strings 模型支持的部署类型列表。
自动学习 准备数据 模型训练 部署上线 模型发布
ModelArts Studio大模型即服务平台已预置非量化模型与AWQ-W4A16量化模型的模型模板。 非量化模型可以支持调优、压缩、部署等操作。 量化模型仅支持部署操作。当需要获取SmoothQuant-W8A8量化模型时,则可以通过对非量化模型进行模型压缩获取。
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
Edge 在ModelArts中使用边缘节点部署边缘服务时能否使用http接口协议?
进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。 FASP剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
进行剪枝,并保存剪枝后的模型;2、使用剪枝后的模型进行推理部署。 常用的剪枝技术包括:结构化稀疏剪枝、半结构化稀疏剪枝、非结构化稀疏剪枝。 FASP剪枝 FASP剪枝是一种结构化稀疏剪枝方法,能有效降低模型显存以及需要部署的资源依赖,减小推理过程中的计算量,降低增量推理时延,提升吞吐。
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
OBS提供了多种语言SDK供选择,开发者可根据使用习惯下载OBS SDK进行调用。使用OBS SDK前,需下载OBS SDK包,然后在本地开发环境中安装使用。 详细指导 :《OBS SDK参考》 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于Ten
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
Server适配Ascend-vLLM PyTorch NPU推理指导(6.5.901) Ascend-vLLM介绍 支持的模型列表 版本说明和要求 推理服务部署 推理关键特性使用 推理服务精度评测 推理服务性能评测 附录 父主题: LLM大语言模型训练推理
指令仍然可以使用。 登录指令末尾的域名为镜像仓库地址,请记录该地址,后面会使用到。 在安装容器引擎的机器中执行上一步复制的登录指令。 登录成功会显示“Login Succeeded”。 在安装容器引擎的机器上执行如下命令,为镜像打标签。 docker tag [镜像名称1:版本名称1]
计费项 自动学习/Workflow计费项 数据管理计费项 开发环境计费项 模型训练计费项 模型管理计费项 推理部署计费项 专属资源池计费项
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
Array of PoolNodeAz objects az列表信息。 extendParams extendParams object 自定义配置参数。 os Os object 操作系统镜像信息。 表9 PoolNodeAz 参数 参数类型 描述 az String 可用区名称。 count
由于发布后的数据集不会默认启动数据特征分析,针对数据集的各个版本,需手动启动特征分析任务。在数据特征页签下,单击“启动特征分析”。 在弹出的对话框中配置需要进行特征分析的数据集版本,然后单击“确定”启动分析。 “版本选择”,即选择当前数据集的已发布版本。 图1 启动数据特征分析任务 数据特
推理关键特性使用 量化 剪枝 分离部署 Prefix Caching multi-step 投机推理 图模式 多模态 Chunked Prefill multi-lora guided-decoding 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM
主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.906) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
推理关键特性使用 量化 剪枝 分离部署 Prefix Caching multi-step 投机推理 图模式 多模态 Chunked Prefill multi-lora guided-decoding 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM