检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
手动尝试,显著缩短了从模型开发到部署的周期,确保了模型在各类应用场景下的高性能表现,让客户能够更加聚焦于业务逻辑与创新应用的设计。 资源易获取,按需收费,按需扩缩,支撑故障快恢与断点续训 企业在具体使用大模型接入企业应用系统的时候,不仅要考虑模型体验情况,还需要考虑模型具体的精度效果,和实际应用成本。
数据准备主要是指收集和预处理数据的过程。 按照确定的分析目的,有目的性的收集、整合相关数据,数据准备是AI开发的一个基础。此时最重要的是保证获取数据的真实可靠性。而事实上,不能一次性将所有数据都采集全,因此,在数据标注阶段你可能会发现还缺少某一部分数据源,反复调整优化。 训练模型
使用ModelArts Standard形态下提供的公共资源池完成模型训推,按照使用量计费,方便快捷。选择公共资源池时,可以通过购买套餐包获取优惠的资源费用,请参见购买套餐包。 资源池必须和MaaS服务在同一个Region下,否则无法选择到该资源池。 购买套餐包 MaaS服务提供
/v1/{project_id}/dev-servers 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 owner 否 String 实例归属的用户ID,长度位32
_id}/versions 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 数据处理任务ID。 表2 Query参数 参数 是否必选 参数类型 描述 limit
-servers/sync 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 owner 否 String 实例归属的用户ID,长度位32
户粘性和满意度。 新闻分析工具: 为分析师提供自动分类的新闻数据,便于进行市场趋势和热点分析。 方案流程 图1 方案实现流程 准备数据集:获取新闻数据集,并上传到OBS。 创建模型:选择Qwen2-7B基础模型,使用推荐权重创建个人专属模型。 调优模型:使用不同的调优参数去训练模型。
是 JobStep的输出 json_key 需要获取的metric信息对应的key值 是 str 结构内容详解: Condition对象(由三部分组成:条件类型,左值以及右值) 条件类型使用ConditionTypeEnum来获取,支持"=="、">"、">="、"in"、"<"、"<="、"
/v2/{project_id}/workflows 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 name 是 String Workflow工作
企业项目是项目的升级版,针对企业不同项目间资源的分组和管理,是逻辑隔离。企业项目中可以包含多个区域的资源,且项目中的资源可以迁入迁出。 关于企业项目ID的获取及企业项目特性的详细信息,请参见《企业管理服务用户指南》。
训练作业结束后,其生成的模型存储在OBS中,创建模型时,从OBS中导入已有的模型文件。 部署上线 将存储在OBS中的模型部署上线。 全局配置 - 获取访问授权(使用委托或访问密钥授权),以便ModelArts可以使用OBS存储数据、创建Notebook等操作。 与云硬盘的关系 ModelArts使用云硬盘服务(Elastic
训练作业结束后,其生成的模型存储在OBS中,创建AI应用时,从OBS中导入已有的模型文件。 部署上线 将存储在OBS中的模型部署上线。 全局配置 - 获取访问授权(使用委托或访问密钥授权),以便ModelArts可以使用OBS存储数据、创建Notebook等操作。 与云硬盘的关系 ModelArts使用云硬盘服务(Elastic
mpare。基本步骤如下: 通过pip安装msprobe工具。 # shell pip install mindstudio-probe 获取NPU和GPU的dump数据。 PyTorch训练脚本插入dump接口方式如下: from msprobe.pytorch import PrecisionDebugger
查看当前pip命令支持的文件名和版本。 import pip print(pip.pep425tags.get_supported()) 获取到支持的文件名和版本如下: [('cp36', 'cp36m', 'manylinux1_x86_64'), ('cp36', 'cp36m'
行重点关注。使用步骤如下: 通过pip安装msprobe工具。 # shell pip install mindstudio-probe 获取NPU和标杆的dump数据。 PyTorch训练脚本插入dump接口方式如下: from msprobe.pytorch import PrecisionDebugger
支持按照检索参数查询模型列表,返回满足检索条件的模型list,检索参数如表1所示。 在查询列表时,返回list的同时,会打印模型列表的详细信息,如表2和表3所示。 当前支持最大获取150个模型对象。 表1 查询检索参数说明 参数 是否必选 参数类型 说明 model_name 否 String 模型名称,可支持模糊匹配。
ep进行loss打印,因此在日志中搜索关键字段“lm loss”即可查看loss。 获取训练吞吐数据:在打印的loss日志中搜索关键字段“elapsed time per iteration”获取每步迭代耗时,总的Token数可以用日志中的“global batch size”和
推理性能,重复性能测试章节可以验证对应的收益情况。 自助性能调优三板斧分别为:通过固定shape获取更好的常量折叠、AOE性能自动调优、自动高性能算子生成工具。 通过固定shape获取更好的常量折叠 在MindIR格式转换时(即执行converter_lite命令时),通过指定具
加载优化器参数 optimizer.load_state_dict(checkpoint['optimizer']) # 获取保存的epoch,模型会在此epoch的基础上继续训练 start_epoch = checkpoint['epoch'] start
加载优化器参数 optimizer.load_state_dict(checkpoint['optimizer']) # 获取保存的epoch,模型会在此epoch的基础上继续训练 start_epoch = checkpoint['epoch'] start