检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Ascend-Power-Engine 1.0(python3) Multi-Engine 1.0 (python2)-cpu Multi-Engine 1.0 (python2)-gpu Multi-Engine 1.0 (python3)-cpu Multi-Engine 1.0 (python3)-gpu Multi-Engine
获取训练作业日志的文件名 功能介绍 获取训练作业日志的文件名。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id}/log/file-names 参数说明如表1所示。 表1 参数说明 参数 是否必选
multiprocessing启动方式有误。 处理方法 可以参考官方文档,如下: """run.py:""" #!/usr/bin/env python import os import torch import torch.distributed as dist import torch
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=
情接口获取。 URI POST /v1/{project_id}/training-jobs/{job_id}/versions 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。
YTHONPATH} 选择的启动文件将会被系统自动以python命令直接启动,因此请确保镜像中的Python命令为您预期的Python环境。通过系统自动注入的PATH环境变量,可以参考下述命令确认训练作业最终使用的Python版本。 export MA_HOME=/home/ma-user;
在ModelArts的Notebook中如何在代码中打印GPU使用信息? 用户可通过shell命令或python命令查询GPU使用信息。 使用shell命令 执行nvidia-smi命令。 依赖CUDA nvcc watch -n 1 nvidia-smi 执行gpustat命令。
执行source命令可以切换到具体的Python环境中。 执行which python查看python路径并复制出来,以备后续配置云上Python Interpreter使用。 图3 获取开发环境预置虚拟环境路径 Step3 配置云上Python Interpreter 单击“File
[ "tf1.13-python3.6-cpu", "tf1.13-python3.6-gpu", "tf1.13-python3.7-cpu", "tf1.13-python3.7-gpu", "python3.6", "tf1.13-python3.7-aiflow-gpu"
pem文件生成)。 单击“Open”。如果首次登录,PuTTY会显示安全警告对话框,询问是否接受服务器的安全证书。单击“Accept”将证书保存到本地注册表中。 图6 询问是否接受服务器的安全证书 成功连接到云上Notebook实例。 图7 连接到云上Notebook实例 父主题: 使用Notebook进行AI开发调试
/home/work/run_train.sh python /home/work/user-job-dir/app/train.py {python_file_parameter}”。需要调用通过启动脚本run_train.sh进行变量的初始化,如AK/SK。run_train.sh后跟python是保证pyth
String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。 project_id
per-channel Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=
per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=
Notebook中直接调用。 ModelArts SDK提供了OBS管理、训练管理、模型管理、服务管理等几个模块功能。目前,仅提供了Python语言的ModelArts SDK接口。 详细指导文档:《ModelArts SDK参考》 OBS SDK OBS服务提供的SDK,对O
检查本地环境是否已安装Python。如果环境中没有安装Python,可从Python官网下载并安装合适的Python版本。Python版本需大于3.7.x版本且小于3.10.x版本,推荐使用3.7.x版本。 在本地环境执行命令python --version,显示如下内容说明Python已安装。
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3
type=host_endpoints 方式一:图形界面的软件获取服务的IP和端口号 图6 接口返回示例 方式二:Python语言获取IP和端口号 Python代码如下,下述代码中以下参数需要手动修改: project_id:用户项目ID,获取方法请参见获取项目ID和名称。 service_id:服务ID,在服务详情页可查看。
Duo PyTorch 2.1.0 驱动 24.1.RC2.3 Python 3.9 CANN 8.0.RC3 MindSpore Lite 2.3.0 OS arm 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.910-xxx