检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SFS Turbo间网络直通,以及配置ModelArts网络关联SFS Turbo。 如果ModelArts网络关联SFS Turbo失败,则需要授权ModelArts云服务使用SFS Turbo,具体操作请参见配置ModelArts和SFS Turbo间网络直通。 图5 ModelArts网络关联SFS
SFS Turbo间网络直通,以及配置ModelArts网络关联SFS Turbo。 如果ModelArts网络关联SFS Turbo失败,则需要授权ModelArts云服务使用SFS Turbo,具体操作请参见配置ModelArts和SFS Turbo间网络直通。 图5 ModelArts网络关联SFS
SFS Turbo间网络直通,以及配置ModelArts网络关联SFS Turbo。 如果ModelArts网络关联SFS Turbo失败,则需要授权ModelArts云服务使用SFS Turbo,具体操作请参见配置ModelArts和SFS Turbo间网络直通。 图5 ModelArts网络关联SFS
Standard提供了多种监控查看方式。 方式一:通过ModelArts Standard控制台查看 您在可通过ModelArts控制台的总览页或各模块资源监控页签查看监控指标。具体涉及以下几个方面: 通过ModelArts控制台的总览页查看,具体请参见通过ModelArts控制台查看监控指标。
存放的是二进制数据,无法直接存放文件,如果需要存放文件,需要先格式化文件系统后使用。 访问方式 在BMS中通过网络协议挂载使用,支持NFS和CIFS的网络协议。需要指定网络地址进行访问,也可以将网络地址映射为本地目录后进行访问。 可以通过互联网或专线访问。需要指定桶地址进行访问,使用的是HTTP和HTTPS等传输协议。
h) 查询onnx模型的输入信息。 # 查询onnx模型的输入信息 t.get_model_input_info() 图1 查询onnx模型的输入输出信息 查询onnx模型的输出信息。 # 查询模型的输出信息 t.get_model_output_info() 图2 查询onnx模型的输出信息
业务中是否有大量使用CPU的代码,以及日常运行过程中CPU的占用率(占用多少个核心),以及使用CPU计算的业务功能说明和并发机制。 - 是否有Linux内核驱动 是否有业务相关的Linux内核驱动代码。 - 依赖第三方组件列表 当前业务依赖的第三方软件列表(自行编译的第三方软件列表)。 例如:Faiss等。
署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本 在ModelArts管理控制台,创建一个Noteboo
安装完成后,系统右下角提示安装完成,导航左侧出现ModelArts图标和SSH远程连接图标,表示VS Code插件安装完成。 图3 安装完成提示 图4 安装完成 当前网络不佳时SSH远程连接插件可能未安装成功,此时无需操作,在Step4 连接Notebook实例的1之后,会弹出如下图对话框,单击Install
aarch64 docker-engine-selinux.noarch docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward
不会显示IPv6网络参数,请以控制台实际显示为准。 RoCE网络 当前使用A系列GPU时,进行分布式训练为了将硬件上的RoCE网卡使用起来,需要配置RoCE网络。 该参数与所选规格有关,如果未选中规格或规格不支持RoCE网络,则不显示。 如果规格支持RoCE网络但未创建过,单击“新建RoCE网络”即可完成创建。
ok传递参数,使得Notebook能根据不同需求调整行为。 任务管理界面:提供用户友好的界面,便于查看、添加和删除定时任务。 任务执行记录:记录每次执行任务的状态和输出,方便后续查看和调试。 操作步骤 打开ModelArts Notebook。 选中Notebook文件(ipynb文件),创建定时任务。
确认对应的脚本、代码、流程在linux服务器上运行正常。 如果在linux服务器上运行就有问题,那么先调通以后再做容器镜像。 确认打入镜像的文件是否在正确的位置、是否有正确的权限。 训练场景主要查看自研的依赖包是否正常,查看pip list是否包含所需的包,查看容器直接调用的pytho
d/v1.7.6/nerdctl-1.7.6-linux-arm64.tar.gz # 将程序解压至运行目录中 tar -zxf nerdctl-1.7.6-linux-arm64.tar.gz -C /usr/bin/ # 查看是否安装成功 nerdctl -v 安装bui
专属资源池为用户提供独立的计算集群、网络,不同用户间的专属资源池物理隔离,公共资源池仅提供逻辑隔离,专属资源池的隔离性、安全性要高于公共资源池。 专属资源池用户资源独享,在资源充足的情况下,作业是不会排队的;而公共资源池使用共享资源,在任何时候都有可能排队。 专属资源池支持打通用户的网络,在该专属资源
对于使用ModelArts专属资源池的用户,在控制台创建完网络后,在网络列表页“操作 > 更多”下拉框中可见“关联sfsturbo”和“解除关联”。其中,“关联sfsturbo”用于将此网络与某个选定的SFS Turbo资源做关联操作,关联完成后,表示SFS Turbo与网络已进行打通,可在训练和开发环境等功能时使用此SFS
d/v1.7.6/nerdctl-1.7.6-linux-arm64.tar.gz # 将程序解压至运行目录中 tar -zxf nerdctl-1.7.6-linux-arm64.tar.gz -C /usr/bin/ # 查看是否安装成功 nerdctl -v 安装bui
群详情页面。 在CCE集群详情页,选择左侧导航栏的“节点管理”,选择“节点”页签。 在节点列表,单击操作列的“更多 > 查看YAML”查看节点配置信息。 查看节点的yaml文件里“cce.kubectl.kubernetes.io/ascend-rank-table”字段是否有值。
myhuaweicloud.com/obsutil/current/obsutil_linux_amd64.tar.gz #tar -xzvf obsutil_linux_amd64.tar.gz && mv obsutil_linux_amd64_*/ utils #alias obsutil='/opt/utils/obsutil'
d/v1.7.6/nerdctl-1.7.6-linux-arm64.tar.gz # 将程序解压至运行目录中 tar -zxf nerdctl-1.7.6-linux-arm64.tar.gz -C /usr/bin/ # 查看是否安装成功 nerdctl -v 安装bui