检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备物体检测数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 数据集要求 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。
训练作业容错检查 用户在训练模型过程中,存在因硬件故障而产生的训练失败场景。针对硬件故障场景,ModelArts提供容错检查功能,帮助用户隔离故障节点,优化用户训练体验。 容错检查包括两个检查项:环境预检测与硬件周期性检查。当环境预检查或者硬件周期性检查任一检查项出现故障时,隔离
训练脚本说明 训练脚本参数说明 不同模型推荐的参数与NPU卡数设置 训练tokenizer文件说明 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
查看训练作业资源占用情况 约束限制 训练作业的资源占用情况系统会自动保存30天,过期会被清除。 如何查看训练作业资源使用详情 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单
其他故障 Notebook中无法打开“checkpoints”文件夹 创建新版Notebook无法使用已购买的专属资源池,如何解决? 在Notebook中使用tensorboard命令打开日志文件报错Permission denied 父主题: 开发环境
ModelArts的Notebook实例upload后,数据会上传到哪里? 针对这个问题,有两种情况: 如果您创建的Notebook使用OBS存储实例时 单击“upload”后,数据将直接上传到该Notebook实例对应的OBS路径下,即创建Notebook时指定的OBS路径。
分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0
基于advisor的昇腾训练性能自助调优指导 昇腾性能自动诊断工具使用说明 基于ModelArts performance advisor插件的昇腾PyTorch性能调优步骤 创建Notebook并执行性能诊断任务 advisor分析报告html文件详解 父主题: GPU业务迁移至昇腾训练推理
精度校验 转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benc
制作自定义镜像用于创建Notebook Notebook的自定义镜像制作方法 在ECS上构建自定义镜像并在Notebook中使用 在Notebook中通过Dockerfile从0制作自定义镜像 在Notebook中通过镜像保存功能制作自定义镜像 父主题: 制作自定义镜像用于ModelArts
使用Notebook进行AI开发调试 Notebook使用场景 创建Notebook实例 通过JupyterLab在线使用Notebook实例进行AI开发 通过PyCharm远程使用Notebook实例 通过VS Code远程使用Notebook实例 通过SSH工具远程使用Notebook
ModelArts训练时使用os.system('cd xxx')无法进入文件夹怎么办? 当在训练作业的启动脚本中使用os.system('cd xxx')无法进入相应的文件夹时,建议使用如下方法: import os os.chdir('/home/work/user-job-dir/xxx')
在ModelArts Standard上运行GPU训练作业的场景介绍 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适的存储及训练方案可提升模型训练效率与资源性价比。ModelArts Standard支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。
超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。
资源选择推荐 不同AI模型训练所需要的数据量和算力不同,在训练时选择合适存储及训练方案可提升模型训练效率与资源性价比。ModelArts支持单机单卡、单机多卡和多机多卡的训练场景,满足不同AI模型训练的要求。针对第一次使用ModelArts的用户,本文提供端到端案例指导,帮助您快
日志文件的大小达到限制 问题现象 ModelArts训练作业在运行过程中报错,提示日志文件的大小已达到限制: modelarts-pope: log length overflow(max:1073741824; already: 107341771; new:90), process
训练作业运行失败 训练作业运行失败排查指导 训练作业运行失败,出现NCCL报错 自定义镜像训练作业失败定位思路 使用自定义镜像创建的训练作业一直处于运行中 使用自定义镜像创建训练作业找不到启动文件 训练作业的监控内存指标持续升高直至作业失败 订阅算法物体检测YOLOv3_ResN
使用预置算法训练时,训练失败,报“bndbox”错误 问题现象 使用预置算法创建训练作业,训练失败,日志中出现如下报错。 KeyError: 'bndbox' 原因分析 用于训练的数据集中,使用了“非矩形框”标注。而预置使用算法不支持“非矩形框”标注的数据集。 处理方法 此问题有两种解决方法:
创建导入任务 支持从OBS中导入新的数据,导入方式包括目录导入和Manifest文件导入。 dataset.import_data(path=None, anntation_config=None, **kwargs) 不同类型的数据集支持的导入方式如表1所示。 表1 不同数据集支持的导入方式
场景介绍 本小节通过一个具体问题案例,介绍模型精度调优的过程。 如下图所示,使用MindSpore Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0