检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
无监督车牌检测工作流 工作流介绍 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件
参照字段是文字内容、位置固定不变的文本框区域。 参照字段为单行文本框,不可以框选竖版文字或跨行框选。 框选参照字段个数须建议大于4个,越多越好,并尽量分散在图片的四周。 参考字段尽量沿着文字边缘框选,精确框住对应文本行为佳。 核对右侧“框选参照字段”中的参照字段是否与框选的参照字段一致。 框选
通用图像分类工作流 工作流介绍 新建应用 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件
换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。 基本概念 参照字段为模板图片和待识别图片中的公共文字部分,所有需要识别的图片中都要包含参照字段,且位置必须固定。 套件提供了自
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
通用实体抽取工作流 工作流介绍 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 自然语言处理套件
热轧钢板表面缺陷检测工作流 工作流介绍 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件
第二相面积含量测定工作流 工作流介绍 准备数据 选择数据 标注数据 训练模型 评估模型 部署服务 父主题: 视觉套件
得了该行业套件的公测权限。 申请行业套件的公测权限后,即可进入套件使用相关功能。 进入套件 登录ModelArts Pro控制台,选择行业套件卡片并单击“进入套件”,即可进入行业套件的控制台。 例如单击自然语言处理套件卡片的“进入套件”,即可进入自然语言处理套件的控制台。 图1 进入套件
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在ModelArts Pro控制台选择“HiLe
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
工作流简介 观察云的外部形状,即云的外形特征、结构特点和云底高度,对预测天气变化有重要的影响。ModelArts Pro提供云状识别工作流,为您提供高精度的云状识别算法,通过云的外部形状预测天气变化。 功能介绍 支持上传多种云状图数据,构建云状的识别模型,用于高精度识别云的外部形状,进而用于气象预测工作。
标注数据 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 针对文本分类场景,是对文本的内容按照标签进行分类处理,标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 进入数据标注页面 在“数据
别套件等,能够快速响应不同行业、不同场景的AI落地需求。 应用开发 应用开发面向企业和行业用户开放,提供特定行业场景的预置行业工作流,用户基于自身行业、场景的需求,进行快速自定制的需求,快速进行应用开发。当前ModelArts Pro开放的预置套件有文字识别套件、自然语言处理套件
选择数据 训练模型 选择训练数据后,无需用户配置任何参数即可开始训练刹车盘类型识别模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“云状识别工作流”新建应用,并训练模型,详情请见训练模型。
通用文本分类工作流 工作流介绍 准备数据 选择数据 标注数据 训练模型 评估模型 部署服务 发布数据集 管理数据集版本 父主题: 自然语言处理套件
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“刹车盘识别工作流”新建应用,并训练模型,详情请见训练模型。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“无监督车牌检测工作流”新建应用,并训练模型,详情请见训练模型。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。