检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
内容审核 深入业务场景,提供完备成熟的内容审核/CV场景快速昇腾迁移的方案,高效解决业务内容审核的算力/国产化需求,助力企业业务稳健发展。 政府 提高公共服务的效率和质量,加强公共安全,优化政策方案和决策过程等。 金融 为金融机构带来更加高效、智能、精准的服务。 矿山 提供端到端AI生
of TmsTag objects TMS的标签结构体。 表3 TmsTag 参数 参数类型 描述 key String TMS标签的key。长度不能超过128个字符,首尾不能有空格,不能以_sys_开头。 value String TMS标签的value。长度不能超过255个字符。
fit_transform(train_x['acc_id1'].astype(str)) 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地I
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
tokenizing data. C error: Expected 4 field 原因分析 csv中文件的每一行的列数不相等。 处理方法 可以使用以下方法处理: 校验csv文件,将多出字段的行删除。 在代码中忽略错误行,参考如下: import pandas as pd pd.read_csv(filePath
更新处理任务 功能介绍 更新处理任务,支持更新“特征分析”任务和“数据处理”两大类任务,仅支持更新任务的描述。可通过指定路径参数“task_id”来更新某个具体任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK
最大时间:2262-04-11 23:47:16.854775807,需注意上下界限。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地I
该报错信息表示验证集中有label在训练集中不存在,可能由于在发布数据集版本进行数据切分时,训练集比例填写为0导致发布的数据全部为验证集,所以出现上述报错。 处理方法 重新发布数据,切分比例为0.8 或者0.9重新创建训练作业进行训练。 父主题: 训练作业运行失败
“RuntimeError: std:exception” 原因分析 PyTorch1.0镜像中的libmkldnn软连接与原生torch的冲突,具体可参看文档。 处理方法 按照issues中的说明,应该是环境中的库冲突了,因此在启动脚本最开始之前,添加如下代码。 import os os.system("rm
容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_tr
appear if you passed in a non-contiguous input. 原因分析 出现该问题的可能原因如下: 数据输入不连续,cuDNN不支持的类型。 处理方法 禁用cuDNN,在训练前加入如下代码。 torch.backends.cudnn.enabled
project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 表2 Query参数 参数 是否必选 参数类型 描述 end_time 是 Long 监控信息的截止时间。 start_time 是 Long 监控信息的起始时间。 workforce_task_id
是 String 用户项目ID。获取方法请参见获取项目ID和名称。 pool_name 是 String 资源池名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 deleteNodeNames 是 Array of strings 待删除的节点名称列表。 响应参数
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
析、销售趋势预测及有针对性的促销活动等。 分类 分类是找出一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等。 聚类 聚类是把一组数据按照相