检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何调用API 构造请求 认证鉴权 返回结果
节点池管理 查询节点池列表 创建节点池 查询指定节点池详情 更新节点池 删除节点池 查询节点池的节点列表
Workflow工作流管理 获取Workflow工作流列表 新建Workflow工作流 删除Workflow工作流 查询Workflow工作流 修改Workflow工作流 总览Workflow工作流 查询Workflow待办事项 在线服务鉴权 创建在线服务包 获取Execution列表
工作空间管理 查询工作空间详情 修改工作空间 删除工作空间 查询工作空间配额 修改工作空间配额 查询工作空间列表 创建工作空间
资源管理 查询OS的配置参数 查询插件模板 查询节点列表 批量删除节点 批量重启节点 查询事件列表 创建网络资源 查询网络资源列表 查询网络资源 删除网络资源 更新网络资源 查询资源实时利用率 创建资源池 查询资源池列表 查询资源池 删除资源池 更新资源池 资源池监控 资源池统计
配额管理 查询OS的配额
模型训练高可靠性 训练作业容错检查 训练日志失败分析 训练作业卡死检测 训练作业重调度 设置断点续训练 设置无条件自动重启 父主题: 使用ModelArts Standard训练模型
分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:
自动模型优化(AutoSearch) 自动模型优化介绍 创建自动模型优化的训练作业 父主题: 使用ModelArts Standard训练模型
管理模型训练作业 查看训练作业详情 查看训练作业资源占用情况 查看模型评估结果 查看训练作业事件 查看训练作业日志 修改训练作业优先级 使用Cloud Shell调试生产训练作业 重建、停止或删除训练作业 管理训练容器环境变量 查看训练作业标签 父主题: 使用ModelArts Standard训练模型
Lite Server使用前必读 Lite Server使用流程 Lite Server高危操作一览表 Lite Server算力资源和镜像版本配套关系
主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理
常见错误原因和解决方法 显存溢出错误 网卡名称错误 工作负载Pod异常 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.911)
主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
执行训练任务 执行训练任务【新】 执行训练任务【旧】 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 mc2融合算子报错 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.912)
执行训练任务 ascendfactory-cli方式启动(推荐) demo.sh方式启动(历史版本) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 mc2融合算子报错 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912) 场景介绍 准备工作 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: MLLM多模态模型训练推理