检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
确认信息无误,然后单击“确定”。只有处于“运行中/停止失败”状态的弹性节点Server可以执行停止操作。 停止服务器为“强制关机”方式,会中断您的业务,请确保服务器上的文件已保存。 父主题: Lite Server资源管理
physical_state IB网卡每个端口的状态。 firmware_version IB网卡的固件版本。 filesystem NFS挂载的文件系统。 mount_point NFS的挂载点。 Diagnos cid GPU所在节点所属的CCE集群ID。 node_ip GPU所在节点的IP。 pool_id
A系列裸金属服务器如何进行RoCE性能带宽测试? 场景描述 本文主要指导如何在GPU A系列裸金属服务器上测试RoCE性能带宽。 前提条件 GPU A系列裸金属服务器已经安装了IB驱动。(网卡设备名称可以使用ibstatus或者ibstat获取。华为云Ant8裸金属服务器使用Ubuntu20
在资源池详情页的右上角,单击“更多>扩缩容”,在资源池扩缩容页面可以查看该资源规格中携带的系统盘、容器盘、数据盘的磁盘类型、大小、数量和写入模式、容器引擎空间大小、挂载路径磁盘配置等参数。 父主题: 管理Standard专属资源池
GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error 问题现象 在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc
GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML 问题现象 华为云裸金属服务器,NVIDIA驱动卸载后重新安装。 (1)已卸载原有版本NVIDIA驱动和CUDA版本,且已安装新版本的NVIDIA驱动和CUDA版本
A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 场景描述 本文指导如何进行节点内NVLINK带宽性能测试,适用的环境为:Ant8或者Ant1 GPU裸金属服务器, 且服务器中已经安装相关GPU驱动软件,以及Pytorch2.0。 GPU A系列裸金属服务器,单台服务
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec
使用Gallery CLI配置工具下载文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli download”可以从AI Gallery仓库下载资源。 命令说明 登录Gallery
open("SimSun.ttf", "wb").write(ttf.content) 35 # FONT_PATH = "SimSun.ttf" FONT_PATH = os.path.join(os.getenv('DATA'), "SimSun.ttf") 父主题:
open("SimSun.ttf", "wb").write(ttf.content) 35 # FONT_PATH = "SimSun.ttf" FONT_PATH = os.path.join(os.getenv('DATA'), "SimSun.ttf" 父主题:
获取待上传的文件名 获取待上传的文件在服务器的绝对路径。 上传单个文件 在服务器执行如下命令,可以将服务器上的文件上传到AI Gallery仓库里面。 gallery-cli upload {repo_id} {文件名} 如下所示,表示将服务器上的文件“D:\workplace\m
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。
分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0
详细示例请参见使用自定义依赖包的模型配置文件示例。然后通过如下示例代码,实现了“saved_model”格式模型的加载推理。 当前推理基础镜像使用的python的logging模块,采用的是默认的日志级别Warning,即当前只有warning级别的日志可以默认查询出来。如果想要
配置更新记录 展示“当前配置”详情和“历史更新记录”。 “当前配置”:展示模型名称、版本、状态、实例规格、分流、实例数、部署超时时间、环境变量、存储挂载等信息。专属资源池部署的服务,同时展示资源池信息。 “历史更新记录”:展示历史模型相关信息。 监控信息 展示当前服务的“资源统计信息”和“模型调用次数统计”。
本章节介绍基于VS Code环境访问Notebook的方式。 前提条件 已下载并安装VS Code。详细操作请参考安装VS Code软件。 用户本地PC或服务器的操作系统中建议先安装Python环境,详见VSCode官方指导。 创建一个Notebook实例,并开启远程SSH开发。该实例状态必须处于