检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
人工标注视频数据 由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelA
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化和per-tensor+per-head静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。
s前检查账号状态,账号不能处于欠费或冻结状态。 Step1 创建OBS桶和文件夹 在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。如下示例中,请创建命名为“test-modelarts”的桶,并创建如表1所示的文件夹。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。
在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 问题现象 在线服务启动后,当在线服务进入到“运行中”状态后,进行预测,预测请求发出后,收到的响应不符合预期,无法判断是不是模型的问题导致的不符合预期。 原因分析 在线服务启动后,ModelArts提供两种方式的预测:
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化、per-tensor+per-head静态量化以及per-token,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。
计算规格说明 AI Gallery提供了多种计算规格供用户按需选用。只要用户的账号费用充足,就可以持续使用资源,详细计费说明请参见计费说明。 计费说明 AI Gallery的计费规则如表1所示。 表1 计费说明 规则 说明 话单上报规则 仅当AI Gallery工具链服务创建成功
使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化、per-tensor+per-head静态量化以及per-token,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类
ModelArts数据管理支持哪些格式? 不同类型的数据集支持不同的功能。 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本 自动分组 数据特征 文件型 图像分类 支持 支持 支持 支持 支持 支持 支持 支持 物体检测 支持 支持 支持 支持
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时,资源不足如何处理?
精度对齐 长训Loss比对结果 使用Msprobe工具分析偏差 Loss对齐结果 父主题: Dit模型Pytorch迁移与精度性能调优
从AI Gallery下载到桶里的数据集,再在ModelArts里创建数据集,显示样本数为0 首先需要确认从AI Gallery下载的数据格式,比如压缩包、excel文件等会被忽略,支持格式详情: 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本
PyTorch迁移精度调优 引言 精度校验 精度调优总体思路 准备工作 问题复现 Msprobe工具使用指导 父主题: GPU训练业务迁移至昇腾的通用指导
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型Pytorch迁移与精度性能调优
【下线公告】华为云ModelArts服务模型转换下线公告 华为云ModelArts服务模型转换在2024年4月30日 00:00(北京时间)正式下线。 下线范围 下线区域:华为云全部Region 下线影响 正式下线后,用户将无法再使用模型转换的功能,包括创建和删除模型转换任务、查询模型转换任务列表和详情功能。
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
Lite Cluster资源配置 Lite Cluster资源配置流程 配置Lite Cluster网络 配置kubectl工具 配置Lite Cluster存储 (可选)配置驱动 (可选)配置镜像预热
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)