检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
rk_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-us
co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size
如何上传数据至OBS? 使用ModelArts进行AI模型开发时,您需要将数据上传至对象存储服务(OBS)桶中。您可以登录OBS管理控制台创建OBS桶,并在您创建的OBS桶中创建文件夹,然后再进行数据的上传,OBS上传数据的详细操作请参见《对象存储服务快速入门》。 您在创建OBS
在Dify中配置支持Function Calling的模型使用 Dify是一个能力丰富的开源AI应用开发平台,为大型语言模型(LLM)应用的开发而设计。它巧妙地结合了后端即服务(Backend as Service)和LLMOps的理念,提供了一套易用的界面和API,加速了开发者构建可扩展的生成式AI应用的过程。
PyTorch迁移性能调优 性能调优总体原则和思路 MA-Advisor和Ascend-Insigh工具使用指导 性能可视化工具与性能分析工具 父主题: GPU训练业务迁移至昇腾的通用指导
准备权重 获取对应模型的权重文件,获取链接参考表1。权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。文件会直接下载用户本地,需要再上传至SFS Turbo中。
准备权重 获取对应模型的权重文件,获取链接参考表1。权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。文件会直接下载用户本地,需要再上传至SFS Turbo中。
准备权重 获取对应模型的权重文件,获取链接参考表1。权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。文件会直接下载用户本地,需要再上传至SFS Turbo中。
准备权重 获取对应模型的权重文件,获取链接参考表1。权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。文件会直接下载用户本地,需要再上传至SFS Turbo中。
确认智能标注作业的数据难例 在数据量很大的标注任务中,标注初期由于已标注图片不足,智能标注的结果无法直接用于训练。如果对所有的未标注数据一一进行调整确认仍然需要较大的人力和时间成本。为了更快地完成标注任务,在对未标注数据进行智能标注的任务中,ModelArts嵌入了自动难例发现功
数据标注场景介绍 由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 ModelArts为用户提供了标注数据的能力:
创建智能标注作业 除了人工标注外,ModelArts还提供了智能标注功能,快速完成数据标注,为您节省70%以上的标注时间。智能标注是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。 数据标注功能仅在以下Region支持:华北-
Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类
co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)