检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx
查询服务详情 查询当前服务对象的详细信息。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行服务详情查询 1 2 3 4 5 6 7 from
命令为:mkdir /mnt/sfs_turbo SFS Turbo存储手动挂载到安装节点中,挂载命令如下截图: 挂载完成后,可通过以下步骤获取到代码和数据,并上传至/mnt/sfs_turbo路径下。 父主题: 准备工作
VS Code连接开发环境失败时的排查方法 VS Code连接开发环境失败时,请参考以下步骤进行基础排查。 网络链路检查 在ModelArts控制台查看Notebook实例状态是否正常,确保实例无问题。 在VS Code Terminal里执行如下命令检测SSH命令是否可用; ssh
获取软件 获取插件代码包AscendCloud-6.3.906-xxx.zip中的AscendCloud-AIGC-6.3.906-xxx.zip文件。获取路径:Support-E。 如果没有软件下载权限,请联系您所在企业的华为方技术支持下载获取。 代码包文件名中的xxx表示具体的时间戳,以包名的实际时间为准。
输入预测代码“{"prompt": "你好", "temperature":0, "max_tokens":20}”,单击“预测”即可看到预测结果。 图8 预测-vllm 如果以openai接口启动服务,设置请求路径:“/v1/completions”,输入预测代码“{"prompt":
VS Code连接开发环境失败时的排查方法 VS Code连接开发环境失败时,请参考以下步骤进行基础排查。 网络链路检查 在ModelArts控制台查看Notebook实例状态是否正常,确保实例无问题。 在VS Code Terminal里执行如下命令检测SSH命令是否可用; ssh
co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size
co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb.contiguous() #新增 posemb = F.interpolate(posemb, size=new_size
Integer 训练作业的状态,详细作业状态列表请参见作业状态参考。 app_url String 训练作业的代码目录。 boot_file_url String 训练作业的代码启动文件。 create_time Long 训练作业的创建时间。 parameter Array<Object>
Standard推理镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的推理代码AscendCloud-LLM-6.3.907-xxx.zip和算子包AscendCloud-OPP-6.3.907-xxx.zip,并执行build_image
输入预测代码“{"prompt": "你好", "temperature":0, "max_tokens":20}”,单击“预测”即可看到预测结果。 图8 预测-vllm 如果以openai接口启动服务,设置请求路径:“/v1/completions”,输入预测代码“{"prompt":
例参考在ECS中通过Dockerfile从0制作自定义镜像用于推理。 图3 模型的自定义镜像制作场景三 约束限制 自定义镜像中不能包含恶意代码。 创建模型的自定义镜像大小不超过50GB。 对于同步请求模式的模型,如果预测请求时延超过60s,会造成请求失败,甚至会有服务业务中断的风
String 训练作业的引擎版本。 status Int 训练作业的状态。 app_url String 训练作业的代码目录。 boot_file_url String 训练作业的代码启动文件。 create_time Long 训练作业的创建时间。 parameter JSON Array
Standard资源池节点故障定位 节点故障定位 对于Standard资源池,ModelArts平台在识别到节点故障后,通过给K8S节点增加污点的方式(taint)将节点隔离避免新作业调度到该节点而受到影响,并且使本次作业不受污点影响。当前可识别的故障类型如下,可通过隔离码及对应检测方法定位故障。
或在实例运行后,将承载数据集的OBS并行文件系统动态挂载至Notebook中,详细操作请参考动态挂载OBS并行文件系统。 代码的存储。在Notebook调测完成,可以直接指定对应的对象存储路径作为启动训练的代码路径,方便临时修改。 训练观测。可以将训练日志等输出路径进行挂载,在Notebook中实时查看和
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。