检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
(存放数据和代码)”。 单机多卡:中等数据量(50G左右训练数据)、中等算力场景(8卡Vnt1),存储方案使用“SFS(存放数据和代码)”。 多机多卡:大数据量(1T训练数据)、高算力场景(4台8卡Vnt1),存储方案使用“SFS(存放数据)+普通OBS桶(存放代码)”,采用分布式训练。
Administrator权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/authorizations 表1 路径参数 参数 是否必选
s),超过该阈值的文件将使用并发下载模式进行分段下载。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者V
环境变量)。 测试训练启动脚本。 优先使用手工进行数据复制的工作并验证 一般在镜像里不包含训练所用的数据和代码,所以在启动镜像以后需要手工把需要的文件复制进去。建议数据、代码和中间数据都放到"/cache"目录,防止正式运行时磁盘占满(请见ModelArts环境挂载目录说明)。建
查询导入任务列表 查询数据集导入任务列表。 dataset.list_import_tasks() 示例代码 查询数据集导入任务列表 from modelarts.session import Session from modelarts.dataset import Dataset
查询模型详情 查询当前模型对象的信息。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据导入模型生成的模型对象进行模型详情查询 1 2 3 4 5 6 7 from modelarts
桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS
查询数据集详情 查询数据集的详细信息,包括数据集的样本信息、版本信息等。 dataset.get_dataset_info() 示例代码 查询数据集详情 from modelarts.session import Session from modelarts.dataset import
'/cache/data_url') 读取“json”文件,请您在代码中尝试如下方法: json.loads(mox.file.read(json_path, binary=True)) 使用“numpy.load”读取“npy”文件,请您在代码中尝试如下方法: 使用MoXing API读取OBS中的文件
list_datasets(session, dataset_type=None, dataset_name=None, offset=None, limit=None) 示例代码 示例一:查询数据集列表 from modelarts.session import Session from modelarts.dataset
查询数据集版本列表 查询数据集的版本列表。 dataset.list_versions() 示例代码 查询数据集版本列表 from modelarts.session import Session from modelarts.dataset import Dataset session
查询导出任务列表 查询数据集导出任务列表。 dataset.list_export_tasks() 示例代码 查询数据集导出任务列表 from modelarts.session import Session from modelarts.dataset import Dataset
提供模型对外Restfull api数据定义,用于定义模型的输入、输出格式。apis定义填写规范请参见模型配置文件编写说明中的apis参数说明,示例代码请参见apis参数代码示例。 确认信息填写无误,单击“立即创建”,完成模型创建。 在模型列表中,您可以查看刚创建的模型及其对应的版本。当模型状态变更为
容器调用接口 如果元模型来源于对象存储服务(AI引擎为Custom)/容器镜像,显示模型启动的协议和端口号。 推理代码 如果元模型来源于训练作业且为旧版训练作业,则显示推理代码的存放路径。 镜像复制 如果元模型来源于容器镜像,显示镜像复制功能状态。 动态加载 如果元模型来源于训练作业/
flash_attn 根因:昇腾环境暂时不支持flash_attn接口 规避措施:修改dynamic_module_utils.py文件,将180-184行代码注释掉 vim /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site
删除数据集版本 删除数据集的指定版本。 dataset.delete_version(version_id) 示例代码 删除数据集指定版本 from modelarts.session import Session from modelarts.dataset import Dataset
更新数据集的名称和描述信息。 dataset.update_dataset(dataset_name=None, description=None) 示例代码 更新数据集名称 from modelarts.session import Session from modelarts.dataset
本教程案例是基于ModelArts Lite DevServer运行的,需要购买并开通DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。
删除数据集 根据数据集ID删除指定的数据集 delete_dataset(session, dataset_id) 示例代码 删除数据集 from modelarts.session import Session from modelarts.dataset import Dataset
|——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/ #