检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Container,SWR)是一种支持镜像全生命周期管理的服务, 提供简单易用、安全可靠的镜像管理功能,帮助您快速部署容器化服务。您可以通过界面、社区CLI和原生API上传、下载和管理容器镜像。 您制作的自定义镜像需要上传至SWR服务。ModelArts开发环境、训练和创建模型使用的自定义镜像需要从SWR服务管理列表获取。
Notebook中快速使用MoXing 本文档介绍如何在ModelArts中调用MoXing Framework接口。 进入ModelArts,创建Notebook实例 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间>Notebook”,进入“Notebook”管理页面。
task_type 标注任务类型,返回指定标注任务类型的任务列表。 是 LabelTaskTypeEnum task_name 标注任务名称,名称只能包含中文、字母、数字、中划线和下划线,长度为1-100位。 当输入是数据集对象时,该参数必填 否 str、Placeholder labels 待创建的标签列表
在VS Code中上传下载文件 在VS Code中上传数据至Notebook 不大于500MB数据量,直接复制至本地IDE中即可。 大于500MB数据量,请先上传到OBS中,再从OBS上传到云上开发环境。 操作步骤 上传数据至OBS。具体操作请参见上传文件至OBS桶。 或者在本地VS
服务部署失败,报错ModelArts.3520,服务总数超限 部署服务时,ModelArts报错“ModelArts.3520: 在线服务总数超限,限制为20”,接口返回“A maximum of xxx real-time services are allowed.”,表示服务数量超限。 正常情况下,
自动学习中部署上线是将模型部署为什么类型的服务? 自动学习中部署上线是将模型部署为在线服务,您可以添加图片或代码进行服务测试,也可以使用URL接口调用。 部署成功后,您也可以在ModelArts管理控制台的“部署上线 > 在线服务”页面中,查看到正在运行的服务。您也可以在此页面停止服务或删除服务。
性能调优总体原则和思路 PyTorch在昇腾AI处理器的加速实现方式是以算子为粒度进行调用(OP-based),即通过Python与C++调用CANN层接口Ascend Computing Language(AscendCL)调用一个或几个亲和算子组合的形式,代替原有GPU的实现方式,具体逻辑模型请参考PyTorch自动迁移。
发布Workflow到ModelArts 发布Workflow到ModelArts有两种方式,这两种方式的区别在发布Workflow至运行态后,需要在Workflow页面配置输入输出等参数;而发布Workflow至运行态并运行通过对代码进行改造,用户直接在SDK侧发布并运行工作流,节省了前往控制台进行配置运行的操作。
准备镜像 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2
准备镜像 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2
的情况下,Fine Tune会是一个比较好的选择。 moxing.tensorflow包含所有的接口,对TensorFlow做了优化,里面的实际接口还是TensorFlow的原生接口。 当非MoXing代码中没有Adam名称范围时,需要修改非MoXing代码,在其中增加如下内容:
准备镜像 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2
yaml”文件。 “config.yaml”文件用于配置pod,代码示例如下。代码中的“xxxx_train.sh”即为2修改的训练启动脚本。 apiVersion: batch.volcano.sh/v1alpha1 kind: Job metadata: name: yourvcjobname
件,您可以通过如下方式实现: 通过OBS管理控制台进行查看。 使用当前账户登录OBS管理控制台,去查找对应的OBS桶、文件夹、文件。 通过接口判断路径是否存在。在已有的Notebook实例,或者创建一个Notebook,执行如下命令,检查路径是否存在。 import moxing
Atlas 800训练服务器HCCN Tool Atlas 800 训练服务器 1.0.11 HCCN Tool接口参考主要介绍集群网络工具hccn_tool对外接口说明,包括配置RoCE网卡的IP、网关,配置网络检测对象IP和查询LLDP信息等。 Atlas 800训练服务器备件查询助手
型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8 per-tensor量化
型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8_pertensor #只支持int8,表示kvint8 per-tensor量化
--listen --log-startup --disable-safe-unpickle --skip-prepare-environment --api 基于dockerfile进行build docker build -t webui:v1 . Step4 上传镜像到容器镜像服务 参考pull/push
分析错误时:训练镜像先看日志,推理镜像先看API的返回。 可以通过命令查看容器输出到stdout的所有日志: docker logs -f 39c9ceedb1f6 一般在做推理镜像时,部分日志是直接存储在容器内部的,所以需要进入容器看日志。注意:重点对应日志中是否有ERROR(包括,容器启动时、API执行时)。
配置了合理的服务部署超时时间,服务还是部署失败,无法启动 服务部署成功的标志是模型启动完成,如果没有配置健康检查,就无法检测到模型是否真实的启动。 在自定义镜像健康检查接口中,用户可以实现实际业务是否成功的检测。在创建AI应用时配置健康检查延迟时间,保证容器服务的初始化。 因此,推荐在创建AI应用时配置健康检查,并设置合理的延迟检测时间,