检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通常可以归纳为几个步骤:确定目的、准备数据、训练模型、评估模型、部署模型。 图1 AI开发流程 确定目的 在开始AI开发之前,必须明确要分析什么?要解决什么问题?商业目的是什么?基于商业的理解,整理AI开发
# 构建镜像 └── qwen-vl_install.sh # 安装模型运行环境 └── qwen-vl.patch # 使用git apply修改模型相关代码
要的,或者将某一类直接全选后添加标签。 目前只有“图像分类”、“物体检测”和“图像分割”类型的数据集支持自动分组功能。 启动自动分组任务 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备>数据标注”,进入“数据标注”管理页面。 在标注作业列表中,选择“物体检测”或“
order="desc") print(model_object_list) 参数说明 查询模型列表,返回list,list大小等于当前用户所有已经部署的模型个数, list中每个元素都是Model对象,对象属性和查询模型详情相同。查询模型列表返回说明: model_list = [model_instance1
ipeline_onnx_stable_diffusion_img2img.py”,其中${diffusers}表示diffusers包的安装路径,可以通过pip进行查看。 # shell pip show diffusers 修改代码依赖 新建并进入/home_host/work/pipeline目录。
e") print(predictor_object_list) 参数说明 查询服务列表,返回list,list大小等于当前用户所有已经部署的服务个数,list中每个元素都是Predictor对象,对象属性同本章初始化服务。 查询服务列表返回说明:service_list_resp
# 构建镜像 │ └── qwen-vl_install.sh # 安装模型运行环境 │ └── qwen-vl.patch # 使用git apply修改模型相关代码
JOBSTAT_SUBMIT_MODEL_FAILED,提交模型失败。 17 JOBSTAT_DEPLOY_SERVICE_FAILED,部署服务失败。 18 JOBSTAT_CHECK_INIT,审核作业初始化。 19 JOBSTAT_CHECK_RUNNING,审核作业正在运行中。
atch_size,优化代码,合理聚合、复制数据。 请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查: 线上环境调试代码(仅适用于非分布式代码)
执行以下命令,下载代码。 git clone https://github.com/facebookresearch/DiT.git cd Dit 执行以下命令,安装依赖项。 pip install diffusers==0.28.0 accelerate==0.30.1 timm==0.9.16 准备数据集。
服务管理权限 表1 服务管理细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 部署模型服务 POST /v1/{project_id}/services modelarts:service:create - √ √ 查询模型服务列表 GET /v1/
1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911) Hunyuan-DiT基于DevServer部署适配PyTorch NPU推理指导(6.3.909) SD3.5基于Lite Server适配PyTorch NPU的推理指导(6.3.912)
上传算法至SFS 下载Swin-Transformer代码。 git clone --recursive https://github.com/microsoft/Swin-Transformer.git 修改lr_scheduler.py文件,把第27行:t_mul=1. 注释掉。
分页查询到的数据处理任务版本列表。 表4 DescTaskVersionResp 参数 参数类型 描述 add_sample_count Integer 处理后新增的图片数量。 create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。
边形标注。 极点标注功能仅支持北京一与北京四区域。 多边形标注时,标注框或极点,必须在图片范围内,超出图片将导致后续作业异常。 开始标注 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备> 数据标注”,进入“数据标注”管理页面。 在标注作业列表右侧“所有类型”页签下
userdata机制拉取cce-agent,但是在服务器上查看没有拉cce-agent的动作,理论上该动作是cloudinit中的脚本在创建时自动执行的,可能是由于安装脚本没有注入userdata或者注入了但未执行。 经查看是由于userdata未执行,可能原因为服务器A制作镜像时没有清理残留目录导致,即:
申请状态。 解决方案 展示伙伴发布的解决方案列表。 我的需求 展示个人发布的需求列表。 我的导出 展示个人导出的资产列表。只有以管理员账号登录才会显示此模块。 我的资料 查看个人基本信息,包括“账号”、“头像”、“昵称”、“邮箱”、“简介”等信息。 单击“编辑资料”,可以编辑“昵称”和“简介”。
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:部署在线服务报错starting container process caused "exec: \"/home/mind/model/run_vllm
模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现物体检测
原因:训练作业使用的镜像CUDA版本只支持sm_37、sm_50、sm_60和sm_70的加速卡,不支持sm_80。 处理建议:使用自定义镜像创建训练作业,并安装高版本的cuda以及对应的PyTorch版本。 查看训练作业的“日志”,出现报错“ERROR:root:label_map.pbtxt cannot