检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
日志提示“No module name 'unidecode'” 问题现象 从mindspore开源gitee中master分支下载的tacotron2模型,修改配置文件后上传ModelArts准备训练,日志报错提示:No module name 'unidecode'。 原因分析
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,若手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: |——AscendCloud-LLM |──llm_train
py是代理模型类,pipeline_onnx_stable_diffusion_img2img_mslite.py是从Stable Diffusion源码中的pipeline复制并修改的,这些文件在后续的章节中会使用并进一步介绍。 图1 代码目录 将“modelarts-ascend/exa
th-to-file}/deepseekV3-w8a8或${path-to-file}/deepseekR1-w8a8目录。 下载msit源码,请下载指定分支br_noncom_MindStudio_8.0.0_POC_20251231。 git clone -b br_noncom_MindStudio_8
下载Megatron-LM、MindSpeed、ModelLink源码,并将以上源码打包至镜像环境中。 若用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 注意:训练作业的资源池以及ECS都需要联通外网,否则会安装和下载失败。
什么是Workflow MLOps简介 在介绍Workflow之前,先了解MLOps的概念。 MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operation
日志提示“Out of bounds nanosecond timestamp” 问题现象 在使用pandas.to_datetime转换时间时,出现如下报错: pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of
日志提示“CUDNN_STATUS_NOT_SUPPORTED. ” 问题现象 在pytorch训练时,出现如下报错: RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendFactory/third-party文件夹中。下载的源码文件结构如下: AscendFactory/third-party/
训练作业进程被kill 问题现象 用户进程被Kill表示用户进程因外部因素被Kill或者中断,表现为日志中断。 原因分析 CPU软锁 在解压大量文件可能会出现此情况并造成节点重启。可以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况
使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门
管理Workflow 查找Workflow工作流 查看Workflow工作流运行记录 管理Workflow工作流 重试/停止/运行Workflow节点 父主题: 使用Workflow实现低代码AI开发
docker exec -it ${container_name} bash Step4 下载并安装Open-clip源码包 从官网下载Open-clip源码包。 git clone https://github.com/mlfoundations/open_clip.git cd
日志报错“DataFrame.dtypes for data must be int, float or bool” 问题现象 训练过程中出现如下报错: DataFrame.dtypes for data must be int, float or bool 原因分析 出现该问题的可能原因如下:
在ModelArts训练代码中,如何获取依赖文件所在的路径? 由于用户本地开发的代码需要上传至ModelArts后台,训练代码中涉及到依赖文件的路径时,用户设置有误的场景较多。因此推荐通用的解决方案:使用os接口得到依赖文件的绝对路径,避免报错。 以下示例展示如何通过os接口获得其他文件夹下的依赖文件路径。
在ModelArts的Notebook中如何在代码中打印GPU使用信息? 用户可通过shell命令或python命令查询GPU使用信息。 使用shell命令 执行nvidia-smi命令。 依赖CUDA nvcc watch -n 1 nvidia-smi 执行gpustat命令。
日志提示“Unexpected keyword argument passed to optimizer” 问题现象 在使用keras时,升级版本>=2.3.0之后,之前跑通的代码出现如下报错: TypeError: Unexpected keyword argument passed
clone下载Megatron-LM、MindSpeed、ModelLink源码(install.sh中会自动下载配套版本,如果手动下载源码还需修改版本)至llm_train/AscendSpeed文件夹中。下载的源码文件结构如下: AscendSpeed/ |──ascendcloud_patch/
日志出现ECC错误,导致训练作业失败 问题现象 训练作业日志运行出现如下报错:RuntimeError: CUDA error: uncorrectable ECC error encountered 原因分析 由于ECC错误,导致作业运行失败。 处理方法 当ECC错误且计数超过
超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。