检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
子账号可以看到所有用户的Notebook实例后,如果要通过SSH方式远程连接其他用户的Notebook实例,需要将SSH密钥对更新成自己的,否则会报错ModelArts.6786。更新密钥对具体操作请参见修改Notebook SSH远程连接配置。具体的错误信息提示:ModelArts.6789:
(可选)配置镜像预热 Lite Cluster资源池支持镜像预热功能,镜像预热可实现将镜像提前在资源池节点上拉取好,在推理及大规模分布式训练时有效缩短镜像拉取时间。本文将介绍如何配置镜像预热功能。 操作步骤 在ModelArts控制台左侧导航栏中找到“资源管理 > AI专属资源池
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
语言模型推理性能测试 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
ssh SSHResp object SSH连接信息。 jupyter_lab JupyterLab object JupyterLab连接信息。 tensorboard Tensorboard object Tensorboard连接信息。 mindstudio_insight
load(checkpoint) model1.load_state_dict(state_dict) 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接
若是“按需计费”的资源池,您可单击操作列的“删除”,即可实现对单个节点的资源释放。 若想批量删除节点,勾选待删除节点名称前的复选框,然后单击名称上方的“删除”,即可实现对多个节点的资源释放。 若是“包年/包月”且资源未到期的资源池,您可单击操作列的“退订”,即可实现对节点的资源释放。支持批量退订节点。
enabled” 原因分析 出现该问题的可能原因如下: 新安装的包与镜像中带的CUDA版本不匹配。 处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。 重装torch等,需要注意选择与上一步版本相匹配的版本。
context-parallel-size 1 表示context并行,默认为1。应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加此值(≥ 2)。 (此参数目前仅适用于Llama3系列模型长序列训练) lr 2.5e-5 学习率设置。 min-lr 2.5e-6 最小学习率设置。
效果优秀的模型需要保证模型拥有良好的泛化能力,即模型不仅要在已给定的数据(训练数据)上表现良好,还要能够在未见过的数据上也达到类似的效果。为了实现这一目标,模型评测是必不可少的环节。通过使用评估数据集对模型进行评估,开发者可以了解模型的优缺点,从而找到优化方向。Maas支持对NLP模型进行自动评测。
eload ckpt的代码,使能读取前一次训练保存的预训练模型。 ModelArts Standard中如何实现断点续训练 在ModelArts Standard训练中实现断点续训练或增量训练,建议使用“训练输出”功能。 在创建训练作业时,设置训练“输出”参数为“train_ur
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围
TMOUT=0这个命令在SSH连接Linux服务器时的作用是设置会话的空闲超时时间为0,意味着不会因为空闲而自动断开连接。默认情况下,SSH连接可能会在一段时间没有操作后自动断开,这是为了安全考虑。但是,如果您正在进行需要长时间保持连接的任务,可以使用这个命令来防止连接因为空闲而断开。您可
permute(0, 3, 1, 2).contigous()) 将版本回退至pytorch1.3。 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接