检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: 最小处理单元为14*14
FLUX.1基于DevServer适配PyTorch NPU推理指导(6.3.909) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。官方提供了三个版本:FLUX.1-pro、FLUX.1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts
SDXL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础
Qwen-VL基于DevServer适配Pytorch NPU的推理指导(6.3.909) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档
LLaMA-VID基于DevServer适配PyTorch NPU推理指导(6.3.910) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展LLaMA-VID的推理过程。 约束限制 本方案目前仅适用于企业客户。
Paraformer基于DevServer适配PyTorch NPU推理指导(6.3.911) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展Paraformer的推理过程。 约束限制 本方案目前仅适用于企业客户。
CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡对CogVideoX模型基于sat框架进行全量微调。本文档中提供的脚本,是基于原生CogV
FLUX.1基于DevSever适配PyTorch NPUFintune&Lora训练指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend
Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,
SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
通过SSH工具远程使用Notebook 本节操作介绍在Windows环境中使用PuTTY SSH远程登录云上Notebook实例的操作步骤。 前提条件 创建一个Notebook实例,并开启远程SSH开发,配置远程访问IP白名单。该实例状态必须处于“运行中”,具体参见创建Notebook实例章节。
训练作业使用的实例数量。 “VC_WORKER_NUM=4” VC_WORKER_HOSTS 多节点训练时,每个节点的域名地址,按顺序以英文逗号分隔,可以通过域名解析获取IP地址。 “VC_WORKER_HOSTS=modelarts-job-a0978141-1712-4f9b-8a83-000000000000-worker-0
Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型,可以用于NPU芯片训练。
MiniCPM-V2.6基于DevServer适配PyTorch NPU训练指导(6.3.909) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡对MiniCPM-V2.6进行LoRA微调及SFT微调。本文档中提供的训练脚本,是基于原生M
0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b-20240727152329-0f2c29a 例如: 华北-北京四 swr.cn-north-4.myhuaweicloud.com/atelier/mindspore_2_3_ascend:mindspore_2
部署推理服务 本章节介绍如何使用vLLM 0.4.2框架部署并启动推理服务。 前提条件 已准备好DevServer环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保容器可以访问公网。
Yolov8基于DevServer适配MindSpore Lite推理指导(6.3.909) 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾Atlas 300I Duo推理卡计算资源,部署Yolov8 Detection模型推理的详细过程。 本方案目前仅适用于企业客户。
在DevServer上部署SD WebUI推理服务 本章节主要介绍如何在ModelArts的DevServer环境上部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 步骤一 准备环境 请参考DevServer资源开通,购买DevServer资源,并确保
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。