检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建团队标注任务 功能介绍 创建团队标注任务。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dat
W4A16量化 大模型推理中,模型权重数据类型(weight),推理计算时的数据类型(activation)和kvcache一般使用半精度浮点FP16或BF16。量化指将高比特的浮点转换为更低比特的数据类型的过程。例如int4、int8等。 模型量化分为weight-only量化
图模式 什么是PTA图模式 PTA图模式使用TorchAir框架(继承自PyTorch框架Dynamo模式)在昇腾NPU上进行图模式推理,可达到最大化消除算子下发瓶颈的目的。推荐在小模型以及MOE模型的场景开启PTA图模式,如Qwen2-1.5B,Qwen2-0.5B,mixtr
VS Code手动连接Notebook 本地IDE环境支持PyCharm和VS Code。通过简单配置,即可用本地IDE远程连接到ModelArts的Notebook开发环境中,调试和运行代码。 本章节介绍基于VS Code环境访问Notebook的方式。 前提条件 已下载并安装VS
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
身份认证与访问控制 身份认证 用户访问ModelArts的方式有多种,包括ModelArts控制台、API、SDK,无论访问方式封装成何种形式,其本质都是通过ModelArts提供的REST风格的API接口进行请求。 ModelArts的接口均需要进行认证鉴权以此来判断是否通过身
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬
创建Workflow数据集节点 功能介绍 通过对ModelArts数据集能力进行封装,实现新版数据集的创建功能。主要用于通过创建数据集对已有数据(已标注/未标注)进行统一管理的场景,后续常见数据集导入节点或者数据集标注节点。 属性总览 您可以使用CreateDatasetStep
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表2。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬
场景介绍 方案概览 本文档介绍了在ModelArts的Standard上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程,利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为用户提供推理部署方案,帮助用户使能大模型业务。
在ModelArts的Notebook中使用MoXing时,如何进行增量训练? 在使用MoXing构建模型时,如果您对前一次训练结果不满意,可以在更改部分数据和标注信息后,进行增量训练。 “mox.run”添加增量训练参数 在完成标注数据或数据集的修改后,您可以在“mox.run
精度调优前准备工作 在定位精度问题之前,首先需要排除训练脚本及参数配置等差异的干扰。目前大部分精度无法对齐的问题都是由于模型超参数、Python三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。
安全边界 云服务的责任共担模型是一种合作方式,其中云服务提供商和云服务客户共同承担云服务的安全和合规性责任。这种模型是为了确保云服务的安全性和可靠性而设计的。 根据责任共担模型,云服务提供商和云服务客户各自有一些责任。云服务提供商负责管理云基础架构,提供安全的硬件和软件基础设施,
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬
使用AI Gallery SDK构建自定义模型 AI Gallery的Transformers库支持部分开源的模型结构框架,并对昇腾系列显卡进行了训练/推理性能优化,可以做到开箱即用。如果你有自己从头进行预训练的模型,AI Gallery也支持使用SDK构建自定义模型接入AI Gallery。
上传数据和算法至SFS(首次使用时需要) 前提条件 ECS服务器已挂载SFS,请参考ECS服务器挂载SFS Turbo存储。 在ECS中已经创建ma-user和ma-group用户,请参考在ECS中创建ma-user和ma-group。 已经安装obsutil,请参考下载和安装obsutil。