检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
erpreter,单击进行添加,再单击“确定”。 图3 添加python_interpreter插件 添加插件后,可在“技能 > 插件”中查看当前已添加的插件。 图4 已添加插件 步骤4:配置对话体验 应用支持配置对话体验功能,该功能可以提升用户与应用之间的互动质量和个性化体验,包括开场白、推荐问题。
填写评测任务描述。 参数填写完成后,单击“立即创建”,回退至“模型评测 > 自动评测”页面。 当状态为“已完成”时,可以单击操作列“评测报告”查看模型评测结果,包括模型详细的得分以及评测明细。 创建NLP大模型人工评测任务 创建NLP大模型人工评测任务步骤如下: 登录ModelArts
数据标注功能,可直接在“数据清洗”页面单击操作列“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 父主题: 加工文本类数据集
在完成数据清洗后,如果无需使用数据标注功能,可直接在“数据清洗”页面单击操作列“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据加工 > 加工数据集”中查看。 父主题: 加工图片类数据集
成功后,状态将显示为“运行成功”。 单击操作列“生成”,将生成“发布数据集”。 发布数据集可在“数据工程 > 数据发布 > 发布数据集”中查看。 通过数据配比功能生成的“发布数据集”,其格式为“默认格式”。 父主题: 发布文本类数据集
流通操作。 当任务状态显示为“运行成功”时,说明数据流通任务执行成功,生成的“发布数据集”可在“数据工程 > 数据发布 > 发布数据集”中查看。 父主题: 发布图片类数据集
部署NLP大模型 创建NLP大模型部署任务 部署后的模型可用于后续调用操作。 创建NLP大模型部署任务 查看NLP大模型部署任务详情 查看部署任务的详情,包括部署的模型基本信息、任务日志等。 查看NLP大模型部署任务详情 管理NLP大模型部署任务 可对部署任务执行执行描述、删除等操作。 管理NLP大模型部署任务
流通操作。 当任务状态显示为“运行成功”时,说明数据流通任务执行成功,生成的“发布数据集”可在“数据工程 > 数据发布 > 发布数据集”中查看。 父主题: 发布文本类数据集
climate.copernicus.eu/datasets,查找名称中包含ERA5和pressure levels的数据集。 表面变量数据下载链接:https://cds.climate.copernicus.eu/datasets,查找名称中包含ERA5和single levels的数据集。
-4e21-8e02-d14f973b6410"} data:{"event":"message","data":{"answer":"查询"},"createdTime":1733821304672,"conversationId":"7795ee1b-b145-4e21-8e02-d14f973b6410"}
系统人设,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。 图1 使用预置服务进行文本对话 可以尝试修改参数并查看模型效果。以修改“核采样”参数为例,核采样控制生成文本的多样性和质量: 当“核采样”参数设置为1时,保持其他参数不变,单击“重新生成”,再
基本信息 名称 训练任务名称。 描述 训练任务描述。 参数填写完成后,单击“立即创建”。 创建好训练任务后,页面将返回“模型训练”页面,可随时查看当前任务的状态。 父主题: 训练CV大模型
基本信息 名称 训练任务名称。 描述 训练任务描述。 参数填写完成后,单击“立即创建”。 创建好训练任务后,页面将返回“模型训练”页面,可随时查看当前任务的状态。 创建NLP大模型增量预训练任务 在模型完成创建NLP大模型预训练任务预训练后,可以对训练后的模型继续训练,该过程称为“增量预训练”。
基本信息 名称 训练任务名称。 描述 训练任务描述。 参数填写完成后,单击“立即创建”。 创建好训练任务后,页面将返回“模型训练”页面,可随时查看当前任务的状态。 父主题: 训练预测大模型
盘古大模型的盘古格式,为后续模型训练提供高效的数据支持。 数据管理:平台支持数据全链路血缘追溯,用户单击数据集名称可以在“数据血缘”页签,查看该数据集所经历的操作。全链路血缘追溯可以帮助用户正向实现数据集影响分析,逆向实现快速问题追踪,提升数据运维和数据治理的效率,帮助用户更好地
登录ModelArts Studio大模型开发平台。 进入需要修改子用户权限的空间,在空间内单击左侧导航栏“空间管理”,在“角色管理”页签,可以查看各角色名称及其权限的描述。 图10 角色管理 单击进入“成员管理”页签。 单击用户列表操作栏的“编辑”。 勾选需要赋予用户的角色,单击“确认”。
盘古科学计算大模型能力与规格 盘古科学计算大模型面向气象、医药、水务、机械、航天航空等领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过AI模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平
大模型使用类 盘古大模型是否可以自定义人设? 如何将本地的数据上传至平台? 导入数据过程中,为什么无法选中OBS的具体文件进行上传? 如何查看预置模型的历史版本? 更多 大模型微调训练类 如何调整训练参数,使盘古大模型效果最优? 为什么微调后的盘古大模型的回答中会出现乱码? 如何判断盘古大模型训练状态是否正常?
编排完成的工作流见图12。 图12 多语种翻译工作流编排 步骤2:试运行多语言文本翻译工作流 完成工作流编排后,需要对该工作流进行试运行,以查看工作流效果。工作流试运行步骤如下: 配置文本翻译插件的Token。 单击右上角“试运行”,在“插件配置”中单击“添加参数”,填写X-Aut
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率