检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查看提示词评估结果 评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看评估状态 单击评估名称,进入评估任务详情页,可以查看详细的评估进度。例如,在图2中有10条评估用例,当前已经评估了8条,剩余2条待评估。 图2 查看评估进展 评估完成后,进入“评估
进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。向量存
进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。向量存
"tool_id": "reserve_meeting_room", "tool_desc": "预定会议室,请在需要预定会议室时调用此工具,预定前需要先查询会议室状态", "input_schema": { "type": "object", "properties": {
项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。 调用API获取项目ID 项目ID还可通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为“GET https://{Endpoint}/v3/projects”,其中{En
策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过工具与外界发生联系并产生影响,工具可以自定义,包括查询信息、调用服务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。
策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执行:能通过工具与外界发生联系并产生影响,工具可以自定义,包括查询信息、调用服务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。
en信息。 通过“服务管理”功能查看调用量 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,选择所需要查看的服务,单击操作列“查看详情”。 图1 查看详情 在服务详情页面,在“概览”页签,可以查看调用量的概览信息,在“监控”页签,可以查看下详细的调用总量、调用成功量与调用失败量。
query_score 工具来查询您的成绩。首先,我将查询您的数学成绩。 行动:使用工具[query_score],传入参数{"arg": "数学"} 工具返回:你的数学的成绩是55分 - 步骤2: 思考:您的数学成绩是55分。接下来,我将查询您的语文成绩。 行动:使用工具[query_score]
模型会更倾向于使用不常见的词汇。 历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数
模型会更倾向于使用不常见的词汇。 历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数
盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响应。这种对话问答方式提高了知识获取效率,使智能客服系统更加人性化和有温度。 此外,盘古大模型还能够根据用户的行为和反馈不
单击“立即创建”,可在资源池列表中查看节点的状态。如果状态为“运行中”,则创建成功。 在主控节点执行如下k8s命令,验证边缘池创建结果: 执行如下命令建立软连接。 ln -s /home/k3s/k3s /usr/bin/kubectl 执行如下命令查看节点状态。 kubectl get
度分布。 检测数据集质量 在“数据工程 > 数据管理”页面,选择“我的数据集”或者“训练数据集”页签。 单击数据集名称,进入数据集详情页,查看详细的数据质量。 其中,数据长度按照token长度划分为2K以下、2K-4K、4K-8K等多个区间,用户可以参考模型训练所需数据量与数据格式要求,调整训练数据。
安装SDK pip直接安装 执行如下命令: pip install pangu_kits_app_dev_py 本地导入 从support网站上下载pangu-kits-app-dev-py的whl包。 建议使用conda创建一个新的python环境,python版本选择3.9。
基础问答 应用介绍 基础的大语言模型问答场景。涉及模型问答,流式效果等相关特性。 环境准备 python3.9 及以上版本。 安装依赖的组件包, pip install pangu_kits_app_dev_py gradio。 盘古大语言模型。 开发实现 创建配置文件llm.properties,
长文本摘要 应用介绍 切割长文本,利用大模型逐步总结,如对会议/报告/文章等总结概述。涉及长文本分割、摘要等相关特性。 环境准备 python3.9 及以上版本。 安装依赖的组件包, pip install pangu_kits_app_dev_py gradio python-docx。
Explorer可根据需要动态生成SDK代码功能,降低您使用SDK的难度,推荐使用。 您可以在API Explorer中具体API页面的“代码示例”页签查看对应编程语言类型的SDK代码。 图1 获取SDK代码示例 当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数
B:我家里上不了网了 B:网连不上 A:先生,您家的网络无法连接是吗 A:请问您尝试重新插拔网线吗? B:是的,我试了 B:还是不行 拼接后的微调数据格式示例: {"context": ["xxx号话务员为您服务! 先生您好,有什么可以帮助您的?", "你好,是这样的 我家里上不了网了 网连不上"
addTools(toolList); 工具添加后,会存储在向量库的索引中,并将指定的字段向量化。 从ToolRetriever中查找工具: // 查找工具 List<Tool> result = cssToolRetriever.search("预订会议室", 2); 返回的re