检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6.3.912-xxx.zip,并直接进入到llm_train/AscendFactory文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud
install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf.sh。脚本具体参数如下: HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。
过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf.sh 。脚本具体参数如下: HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。
自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6.3.910-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud
install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
构造请求 本节介绍REST API请求的组成,并以调用IAM服务的获取用户Token接口说明如何调用API,Token可以用于调用其他API时的鉴权。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987
modelarts-infer.com VPC:选择内网域名关联的VPC。 单击“确定”,完成DNS内网域名的创建。 VPC访问在线服务 通过VPC访问通道访问在线服务,API如下: https://{DNS内网域名}/{URL} DNS内网域名:设置的内网域名。您还可以通过在线服务列表页,单击“V
自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6.3.909-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud
过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf.sh 。脚本具体参数如下: HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。
过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf.sh 。脚本具体参数如下: HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。
为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf.sh脚本
为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf.sh脚本
{ModelArts提供的训练基础镜像地址} # 配置pip RUN mkdir -p /home/ma-user/.pip/ COPY --chown=ma-user:ma-group pip.conf /home/ma-user/.pip/pip.conf # 设置容器镜像预置环境变量
如何将Keras的.h5格式的模型导入到ModelArts中? ModelArts不支持直接导入“.h5”格式的模型。您可以先将Keras的“.h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。
[batch size] tmpdir:即为步骤三中的outdir,训练data地址 cpdir:为训练生成权重的地址 configpath:为模型config文件的地址 basepath:为大模型权重地址 bs:为batch大小 其中,要获取模型config文件, 首先到https://github
如果已完成权重转换,则直接执行预训练任务。如果未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf.sh 。脚本具体参数如下: HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。
自定义镜像的python环境没有注册。 解决方案 在Terminal里执行命令排查实例存在几个Conda环境。 conda env list 执行如下命令分别切换到对应环境查看是否有ipykernel包。 conda activate base # base替换为实际使用的python环境 pip show