检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
2024年10月发布的版本,支持在线推理、能力调测特性,支持1个实例部署推理。 Pangu-AI4S-Weather-Precip_6h-3.0.0 用于降水预测 2024年12月发布的版本,相较于10月发布的版本模型运行速度有提升,支持1个实例部署推理。 Pangu-AI4S-Weather_1h-20241030
output TaskOutputDto object 输出数据的信息。 config TaskConfigDto object 科学计算大模型配置信息。 表3 TaskInputDto 参数 参数类型 描述 type String 存储类型。 data Array of ObsStorageDto
准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 使用“能力调测”功能 调用API接口 “能力调测”功能支持用户直接调用已部署的预置服务,使用步骤如下: 登录ModelArts
度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单 API 功能 操作指导 NLP大模型-文本对话 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。
查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化 模型训练任务正在进行初始化配置,准备开始训练。 已完成 模型训练已完成。 运行中 模型正在训练中,训练过程尚未结束。 创建失败 训练任务创建失败。 训练失败 模型训练过
running or have been deleted. 推理服务状态异常。 请检查调用API时deploymentId是否正确,并检查模型的部署状态是否存在异常,如果仍无法解决请联系服务技术支持协助解决。 PANGU.3267 qps exceed the limit. QPS超出限制。
在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。
大模型服务。 准备工作 申请试用盘古大模型服务 订购盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间 04 AI一站式流程 通过一站式流程,完成从数据导入、数据加工、数据发布、模型训练、模型压缩、模型部署、模型评测到模型调用,全面掌握盘古大模型的开发过程。同时,结合应用开
查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化 模型训练任务正在进行初始化配置,准备开始训练。 已完成 模型训练已完成。 运行中 模型正在训练中,训练过程尚未结束。 创建失败 训练任务创建失败。 训练失败 模型训练过
发,全程0代码开发,极大降低大模型开发门槛。 功能强,Agent开发“好” Agent开发提供便捷搭建大模型应用功能,并提供功能强大的插件配置,让Agent能力更强,更专业。 统一管,资产管理“全” ModelArts Studio大模型开发平台数据、模型、Agent应用在统一的
是 TaskOutputDto object 输出数据的信息。 config 是 TaskConfigDto object 科学计算大模型配置信息。 表4 TaskInputDto 参数 是否必选 参数类型 描述 type 是 String 存储类型,取值为obs。 data 是
填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发
2024年11月发布的版本,用于海洋基础要素预测,可支持1个实例部署推理。 Pangu-AI4S-Ocean_Regional_24h-20241130 2024年11月发布的版本,用于区域海洋基础要素预测,1个训练单元起训及1个实例部署。 Pangu-AI4S-Ocean_Ecology_24h-20241130
微调之后,才可支持推理部署。 Pangu-NLP-N2-Chat-32K-20241030 32K 4K 2024年10月发布版本,支持8K序列长度训练,4K/32K序列长度推理。全量微调32个训练单元起训,LoRA微调8个训练单元起训,4个推理单元即可部署。此模型版本差异化支持预训练特性、INT8量化特性。
是 TaskOutputDto object 输出数据的信息。 config 是 TaskConfigDto object 科学计算大模型配置信息。 表4 TaskInputDto 参数 是否必选 参数类型 描述 type 是 String 存储类型,取值为obs。 data 是
全生命周期的大模型工具链。 ModelArts Studio大模型开发平台为开发者提供了一种简单、高效的开发和部署大模型的方式。平台提供了包括数据处理、模型训练、模型部署、Agent开发等功能,以帮助开发者充分利用盘古大模型的功能。企业可以根据自己的需求选取合适的大模型相关服务和产品,方便地构建自己的模型和应用。
过微调之后,才可支持推理部署。 Pangu-NLP-N2-Chat-32K-20241030 32K 2024年10月发布版本,支持8K序列长度训练,4K/32K序列长度推理。全量微调32个训练单元起训,LoRA微调8个训练单元起训,4个推理单元即可部署。此模型版本差异化支持预训练特性、INT8量化特性。
提供准确的预测结果。 应用与部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,
附录 状态码 错误码 获取项目ID 获取模型部署ID
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。