检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
“名称”:设置此任务的名称。 “标注场景”:选择标注作业的任务类型。 “标签集”:展示当前数据集已有的标签及标签属性。 “启用团队标注”:选择打开,并配置如下团队标注相关参数。 “类型”:设置任务类型,支持“指定标注团队”或“指定标注管理员”。 “选择标注团队”:任务类型设置为“指定标注团队
您可以对处于“运行完成”、“异常”和“停止”状态的服务进行启动操作,“部署中”状态的服务无法启动。启动服务,当服务处于“运行中”状态后,ModelArts将开始计费。您可以通过如下方式启动服务: 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署”,进入目标服务类型管理页面。您可以单击“操作”列的“启动”,启动服务。
准备权重 准备BF16权重 准备W8A8权重 父主题: DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导
场景描述 本方案介绍了在ModelArts的Lite Server上使用昇腾计算资源开展DeepSeek R1和DeepSeek V3模型推理部署的详细过程。推理框架使用MindIE。 资源规划 本方案推荐用户使用W8A8量化权重,需要2台Ascend Snt9B资源。Snt9B资源的单卡显存不低于64GB。
使用python3.6-torch1.4版本镜像环境安装MMCV报错 问题现象 日志报错中存在AssertionError: MMCV==1.2.5 is used but incompatible. Please install mmcv>=1.3.1, <=1.5.0。 原因分析
您可以对处于“运行完成”、“异常”和“停止”状态的服务进行启动操作,“部署中”状态的服务无法启动。启动服务,当服务处于“运行中”状态后,ModelArts将开始计费。您可以通过如下方式启动服务: 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署”,进入目标服务类型管理页面。您可以单击“操作”列的“启动”,启动服务。
h5”格式转换为TensorFlow的格式,然后再导入ModelArts中。 从Keras转TensorFlow操作指导请参见其官网指导。 父主题: Standard推理部署
在ModelArts中使用边缘节点部署边缘服务时能否使用http接口协议? 系统默认使用https。如果您想使用http,可以采取以下两种方式: 方式一:在部署边缘服务时添加如下环境变量: MODELARTS_SSL_ENABLED = false 图1 添加环境变量 方式二:在
在ModelArts中1个节点的专属资源池,能否部署多个服务? 支持。 在部署服务时,选择专属资源池,在选择“计算节点规格”时选择“自定义规格”,设置小一些或者选择小规格的服务节点规格,当资源池节点可以容纳多个服务节点规格时,就可以部署多个服务。如果使用此方式进行部署推理,选择的规格务必满足模型的
l API,可使用HTTPS协议访问。ModelArts提供了SDK用于调用在线服务API,SDK调用方式请参见《SDK参考》>“场景1:部署在线服务Predictor的推理预测”。 除此之外,您还可以使用常见的开发工具及开发语言调用此接口,建议通过互联网搜索并获取调用标准Restful
调用ModelArts API接口创建训练作业和部署服务时,如何填写资源池的参数? 调用API接口创建训练作业时,“pool_id”为“资源池ID”。 调用API接口部署在线服务时,“pool_name”为“资源池ID” 。 图1 资源池ID 父主题: API/SDK
自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型部署”页面部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。
间。 查看自动学习和Workflow的账单 自动学习和Workflow运行时,在进行训练作业和部署服务时,会产生不同的账单。 训练作业产生的账单可参考查看训练作业的账单查询。 部署服务产生的账单可参考查看在线服务的账单查询。 查看Notebook的账单 登录ModelArts管理控制台,选择“开发空间
在云监控平台查看在线服务性能指标 ModelArts支持的监控指标 为使用户更好地掌握自己的ModelArts在线服务和对应模型负载的运行状态,云服务平台提供了云监控。您可以使用该服务监控您的ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作,帮助您更好地了解服务和模型的各项性能指标。
图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型管理 > 模型”页面中直接部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。
镜像在SWR上显示只有13G,安装少量的包,然后镜像保存过程会提示超过35G大小保存失败,为什么? 问题现象 我的镜像在SWR侧看,只有13G左右,在开发环境Notebook镜像管理注册,启动Notebook实例后,安装一些包后,镜像保存过程会提示超过35G大小,保存失败? 原因分析
driver version : 440.95.01 gpu driver version : 440.95.01(GPU驱动在宿主机中安装,镜像中无需安装) cuda runtime version : 10.2(PyTorch自带,无需关心) cudnn version : 7.6
”。“整柜”参数为创建资源池时选择,扩缩容时不可修改。用户通过增减“数量”来改变“目标总实例数”。 在“专属资源池扩缩容”页面,设置“资源配置 > 可用区”,可用区可选择“随机分配”和“指定AZ”。 选择随机分配时,扩缩容完成后,节点的可用区分布由系统后台随机选择。 选择指定AZ
MiniCPM-v2 √ x x x x https://huggingface.co/HwwwH/MiniCPM-V-2 注意:需要修改源文件site-packages/timm/layers/pos_embed.py,在第46行上面新增一行代码,如下: posemb = posemb
驱动升级 NPU升级。 节点正在执行NPU驱动升级。 A200008 节点管理 节点准入 准入检测。 节点正在进行节点准入检测,包括基本的节点配置检查和简单的业务验证。 A050933 节点管理 容错Failover 当节点具有该污点时,会将节点上容错(Failover)业务迁移走。