检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
AscendCloud-3rdLLM-6.3.905-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。
本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现图像分类
ModelArts Lite Server提供不同型号的xPU裸金属服务器,您可以通过弹性公网IP进行访问,在给定的操作系统镜像上可以自行安装加速卡相关的驱动和其他软件,使用SFS或OBS进行数据存储和读取相关的操作,满足算法工程师进行日常训练的需要。 ModelArts Lite
ASCEND service_type 否 String 镜像支持服务类型。枚举值如下: COMMON:通用镜像。 INFERENCE: 建议仅在推理部署场景使用。 TRAIN: 建议仅在训练任务场景使用。 DEV: 建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。
dataset createAutoLabelingTask 创建自动分组任务 dataset createAutoGroupingTask 创建自动部署任务 dataset createAutoDeployTask 导入样本到数据集 dataset importSamplesToDataset
AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。
情。 如何选择可用区? 是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。 区域和终端节点 当您通过API使用
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |──llm_inference # 推理代码包 |──llm_tools
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
deepseek-v2-236B deepseek-coder-v2-lite-16B Ascend-vllm支持如下推理特性: 支持分离部署 支持多机推理 支持大小模型投机推理及eagle投机推理 支持chunked prefill特性 支持automatic prefix caching
AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的
OBS桶必须和MaaS服务在同一个Region下,否则无法选择到该OBS路径。 准备资源池 在ModelArts Studio大模型即服务平台进行模型调优、压缩或部署时,需要选择资源池。MaaS服务支持专属资源池和公共资源池。 专属资源池:专属资源池不与其他用户共享,资源更可控。在使用专属资源池之前,您
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建