检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--block-size:PagedAttention的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存
),或者每次都使用新的密钥对。 Step1 配置SSH 在本地的PyCharm开发环境中,单击File -> Settings -> Tools -> SSH Configurations,单击+号,增加一个SSH连接配置。 Host:云上开发环境的IP地址,即在开发环境实例页面
${MY_HOME}/hostfile printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n" mpirun \ --hostfile ${MY_HOME}/hostfile \
单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图5 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。
Notebook打开后黑屏,由于代理问题导致,切换代理。 打开Notebook显示空白 打开Notebook时显示空白,请清理浏览器缓存后尝试重新打开。 检查浏览器是否安装了过滤广告组件,如果是,请关闭该组件。 报错404 如果是IAM用户在创建实例时出现此错误,表示此IAM用户不具备对应存储位置(OBS桶)的操作权限。
m-scheduler-steps个token。开启投机推理后无需配置该参数。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使
并打开节点的安全组配置,添加入方向规则,允许外部访问9090端口。 如果使用Grafana对接Prometheus制作报表,可以将Grafana部署在集群内,这里不需要对Prometheus绑定公网IP和配置安全组,只需要对Grafana绑定公网IP和配置安全组即可。 图1 添加入方向规则
在ModelArts控制台的“全局配置”页面,单击“添加授权”后,系统会引导您为特定用户或所有用户进行委托配置,通常默认会创建一个名为“modelarts_agency_<用户名>_随机ID”的委托条目。在权限配置的区域,您可以选择ModelArts提供的预置配置,也可以自定义选择您所授权
bash -x opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。
bash -x opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。
bash -x opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。
Notebook打开后黑屏,由于代理问题导致,切换代理。 打开Notebook显示空白 打开Notebook时显示空白,请清理浏览器缓存后尝试重新打开。 检查浏览器是否安装了过滤广告组件,如果是,请关闭该组件。 报错404 如果是IAM用户在创建实例时出现此错误,表示此IAM用户不具备对应存储位置(OBS桶)的操作权限。
bash -x opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。
bash -x opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。
优先排查APIG(API网关)是否是通的,可以在本地使用curl命令排查,命令行:curl -kv {预测地址}。如返回Timeout则需排查本地防火墙,代理和网络配置。 检查模型是否启动成功或者模型处理单个消息的时长。因APIG(API网关)的限制,模型单次预测的时间不能超过40S,超过后系统会默认返回Timeout错误。
训练作业参数有两种来源,包括后台自动生成的参数和用户手动输入的参数。具体获取方式如下: 创建训练作业时,“输入”支持配置训练的输入参数名称(一般设置为“data_url”),以及输入数据的存储位置,“输出”支持配置训练的输出参数名称(一般设置为“train_url”),以及输出数据的存储位置。 训练作业运
在专属资源池列表中,单击资源池“ID/名称”,进入详情页。单击右上角“配置NAS VPC”,检查是否开启了NAS VPC。详情页面的“NAS VPC名称”和“NAS 子网ID”如果为空则证明没有开启,单击右上角配置NAS VPC即可。 如果单击开启后报错,可能是由于对应的VPC已经创建了对等连接,删除对等连接即可。
e的编译任务,从而能够在推理时支持多种shape的输入。 动态batch 在模型转换阶段通过--configFile参数指定配置文件,并且在配置文件中配置input_shape及dynamic_dims动态参数。其中input_shape的-1表示动态shape所在的维度,dyn
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
安装过程预计1~2分钟,如图2所示,请耐心等待。 图2 安装过程 安装完成后,系统右下角提示安装完成,导航左侧出现ModelArts图标和SSH远程连接图标,表示VS Code插件安装完成。 图3 安装完成提示 图4 安装完成 当前网络不佳时SSH远程连接插件可能未安装成功,此时无需操作,在Step4