检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:CPU架构必须选择鲲鹏计算,镜像推荐选择EulerOS。 图1 购买ECS Step2 安装Docker 检查docker是否安装。 docker
部署上线时,出现错误 在部署上线前,您需要基于训练后的模型编写配置文件和推理代码。 如果您的模型存储路径下,缺少配置文件“confi.json”,或者缺少推理代码“customize_service.py”时,将出现错误,错误信息如下图所示。 解决方案: 请参考模型包规范写配置文
登录如图所示。后续安装Docker、获取镜像、构建镜像等操作均在该ECS上进行。 图2 CloudShell远程登录界面 Step3 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum
登录如图所示。后续安装Docker、获取镜像、构建镜像等操作均在该ECS上进行。 图2 CloudShell远程登录界面 Step3 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum
和创建模型界面上配置的端口。确认两处端口保持一致。模型创建界面如果不填端口信息,则ModelArts会默认监听8080端口,即镜像代码中启用的端口必须是8080。 图2 自定义镜像中的代码开放的端口 图3 创建模型界面上配置的端口 健康检查配置有问题 镜像如果配置了健康检查,服务启动失败,从以下两个方面进行排查:
修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。
在线服务实例所在的安全组,服务自定义网络配置时返回。 status String 服务状态,取值包含: running:运行中,服务正常运行。 deploying:部署中,服务正在部署,包含打镜像和调度资源部署。 concerning:告警,后端实例部分存在异常。 failed:失败,服务部署失败,失败原因可以看事件和日志标签页。
登录如图所示。后续安装Docker、获取镜像、构建镜像等操作均在该ECS上进行。 图2 CloudShell远程登录界面 Step3 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum
目录章节并更新dataset_info.json 文件。 Step2 修改训练yaml文件配置 LlamaFactroy配置文件为yaml文件,启动训练前需修改yaml配置文件,yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo
VS Code中设置远端默认安装的插件 在VS Code的配置文件settings.json中添加remote.SSH.defaultExtensions参数,如自动安装Python和Maven插件,可配置如下。 "remote.SSH.defaultExtensions": [
使用自定义镜像创建在线服务,如何修改默认端口 当模型配置文件中定义了具体的端口号,例如:8443,创建AI应用没有配置端口(默认端口号为8080),或者配置了其他端口号,均会导致服务部署失败。您需要把AI应用中的端口号配置为8443,才能保证服务部署成功。 修改默认端口号,具体操作如下: 登
--tensor-parallel-size:并行卡数。 --host:服务部署的IP,使用本机IP 0.0.0.0。 --port:服务部署的端口8080。 --max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max_posit
裸金属服务器环境配置指南。 本文基于方式二的环境进行操作,请参考方式二中的环境开通和配置指导完成裸机和容器开发初始化配置。注意业务基础镜像选择Ascend+PyTorch镜像。 配置好的容器环境如下图所示: 图1 环境配置完成 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
目录章节并更新dataset_info.json 文件。 Step2 修改训练yaml文件配置 LlamaFactroy配置文件为Yaml文件,启动训练前需修改Yaml配置文件,Yaml配置文件在代码目录下的{work_dir}/llm_train/LLaMAFactory/demo
仅适用于GPU资源监控。 前提条件 裸金属服务器需要安装driver、cuda、fabric-manager软件包。 步骤一:安装Docker 使用Docker官方脚本安装最新版Docker: curl https://get.docker.com | sh sudo systemctl
面,完成基本配置后单击“下一步:网络配置”,进入网络配置页面,选择1中打通的VPC,完成其他参数配置,完成高级配置并确认配置,下发购买弹性云服务器的任务。等待服务器的状态变为“运行中”时,弹性云服务器创建成功。单击“名称/ID”,进入服务器详情页面,查看虚拟私有云配置信息。 图4
USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号