检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
执行训练任务 ascendfactory-cli方式启动(推荐) demo.sh方式启动(历史版本) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
勾选节点名称,选择节点列表上方的“添加/编辑资源标签”或“删除资源标签”,操作单个节点或批量操作节点资源标签。 查找搜索节点 在节点管理页面的搜索栏中,支持通过节点名称、IP地址、资源标签等关键字搜索节点。 设置节点列表显示信息 在节点页面中,单击右上角的设置图标,支持对节点列表中显示的信息进行自定义。 删除/退订/释放节点
勾选节点名称,选择节点列表上方的“添加/编辑资源标签”或“删除资源标签”,操作单个节点或批量操作节点资源标签。 查找搜索节点 在节点管理页面的搜索栏中,支持通过节点名称、IP地址、资源标签等关键字搜索节点。 设置节点列表显示信息 在节点页面中,单击右上角的设置图标,支持对节点列表中显示的信息进行自定义。 删除/退订/释放节点
untu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 安装Docker。
作镜像时安装。 操作步骤 下载MLNX_OFED_LINUX-4.3-1.0.1.0-ubuntu16.04-x86_64.tgz。 进入地址,单击“Download”,选择“Archive Versions”,“Version”选择“4.3-1.0.1.0”,“OS Distr
定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
Array of strings 镜像支持的规格。 枚举值如下: CPU GPU ASCEND swr_path String SWR镜像地址。 tag String 镜像Tag。 type String 镜像类型。枚举值如下: BUILD_IN:系统内置镜像。 DEDICATED:用户保存的镜像。
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。 --dataset-path:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val
--max-cpu-loras=32 参数说明如下: --enable-lora表示开启lora挂载。 --lora-modules后面添加挂载的lora列表,要求lora地址权重是Huggingface格式,当前支持QKV-proj、O-proj、gate_up_proj、down_proj模块的挂载。发请求时
912版本是第一次发布。 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 框架 1 Qwen-VL 7b https://huggingface.co/Qwen/Qwen-VL-Chat DeepSpeed 操作流程
containers: - image: bert_pretrain_mindspore:v1 # 镜像地址,Training framework image, which can be modified. imagePullPolicy:
部署预测分析服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待训练状态变为“等待输入”,双击“服务部署”节点,完成相关参数配置。
在线服务鉴权 功能介绍 计费工作流在线服务鉴权。 接口约束 无 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/workflows/service/auth