检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
URI-scheme 传输请求的协议,当前所有API均采用HTTPS协议。 Endpoint 承载REST服务端点的服务器域名或IP。 resource-path 资源路径,即API访问路径。从具体API的URI模块获取。 query-string 查询参数,可选,查询参数前面需要带一个“?”,形式为“参数名=参数取值”。
版本: 0.1 - 语言: 中文 - 描述: 我是一个旅行规划助理,能够帮助用户查询天气、预订车票,以及查询旅游地的风景人文。 ## 技能 ### 技能-1 1. 通过调用{tool_id}工具,查询目的地的天气信息。 ### 技能-2 1. 能够根据用户需求和偏好,帮助用户规划旅行路线。
query_score 工具来查询您的成绩。首先,我将查询您的数学成绩。 行动:使用工具[query_score],传入参数{"arg": "数学"} 工具返回:你的数学的成绩是55分 - 步骤2: 思考:您的数学成绩是55分。接下来,我将查询您的语文成绩。 行动:使用工具[query_score]
约束与限制 受技术等多种因素制约,盘古大模型服务存在一些约束限制。 每个模型请求的最大Token数有所差异,详细请参见模型的基础信息。 模型所支持的训练数据量、数据格式要求请参见《用户指南》“准备盘古大模型训练数据集 > 模型训练所需数据量与数据格式要求”。
段内学习率较小,模型可以慢慢趋于稳定,待模型相对稳定后再逐渐提升至预设的最大学习率进行训练。使用热身可以使得模型收敛速度更快,效果更佳。 当前盘古-NLP-N4-基模型支持自监督训练。 表3 盘古-NLP-N4-基模型训练参数推荐 训练参数 推荐值 数据批量大小 4 训练轮数 1
ction,当前Action,状态 Attributes: messages: 本次session的用户的输入 session_id: UUID,在一个session内唯一 current_action: 当前Action
模型会更倾向于使用不常见的词汇。 历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数
使用外推扩展模型上下文处理长度 在部署模型、部署后修改模型规格时,可以通过外推功能调整模型的输入输出长度。修改部署时扩缩容和外推场景互斥,每次只能修改一个。 当前仅盘古-NLP-N4系列模型以及基于它们训练的模型支持外推。 图1 模型部署外推升级 扩缩容部署实例数量 扩缩容是指运行中的模型支持增加或减少模型部署的实例数。
模型会更倾向于使用不常见的词汇。 历史对话保留轮数 选择要包含在每个新API请求中的过去消息数。这有助于为新用户查询提供模型上下文。参数设置为10,表示包括5个用户查询和5个系统响应。该参数只涉及多轮对话功能。 体验预置模型文本补全能力 进入“文本补全”页签,选择模型与示例,参数
评估盘古大模型 创建模型评估数据集 创建模型评估任务 查看评估任务详情
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 提示词工程
训练盘古大模型 选择模型与训练方法 创建训练任务 查看训练任务详情与训练指标 常见训练报错与解决方案
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
"project": { "name": "cn-southwest-2" //盘古大模型当前部署在“西南-贵阳一”区域,取值为cn-southwest-2 } } } } Python
历史Action */ private List<AgentAction> historyAction; /** * 当前Action */ private AgentAction currentAction; /** * Agent状态
step:已完成的训练步数。 batch_size:每个训练步骤中使用的样本数据量。 sequence:每个数据样本中的token数量。 数据量以token为单位。 当前盘古-NLP-N2-基模型与盘古-NLP-N4-基模型支持有监督微调。 表3 盘古-NLP-N2-基模型训练参数推荐 应用场景 参数 推荐值
间的映射关系。 创建有监督训练任务 模型评估 创建模型评估任务 训练完成后评估模型的回答效果。 创建模型评估任务 查看模型评估结果 查看模型评估指标和评估结果。 查看评估任务详情 模型压缩 - 通过模型压缩技术实现同等QPS目标下,降低推理显存占用。 压缩盘古大模型 模型部署 -
场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出,以供下游操作,从而满足该场景下客户需求。
否需要为您预订其他时间段或者其他会议室? - 步骤1: 思考:好的,我需要先查询A02会议室今天下午3点到8点的预订状态。使用meeting_room_status_query工具进行查询。 行动:使用工具[meeting_room_status_query],传入参数"{\"start\":
待评估模型:支持选择多个模型版本同时评估,最多选择5个。待评估模型必须符合前提条件。 评估资源:依据选择的模型数据自动给出所需的评估资源。 打分模式:当前版本打分模式仅支持基于规则,用户不可选,且暂无人工打分。基于规则打分:使用预置的相似度或准确率打分规则对比模型生成结果与真实标注的差异,从而计算模型指标。