已找到以下 10000 条记录
  • 分享深度学习笔记

    深度学习领域,特别是NLP(最令人兴奋的深度学习研究领域)中,该模型的规模正在扩大。最新的gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?通常情况下,gpt-3是非常有说服力的,但它在过去一再表明,“成功的科

    作者: 初学者7000
    636
    1
  • PyTorch深度学习实战 | 深度学习框架(PyTorch)

    640.png 1、PyTorch简介 2017年1月,Facebook人工智能研究院(FAIR)团队GitHub上开源了PyTorch,并迅速占领GitHub热度榜榜首。 作为具有先进设计理念的框架,PyTorch的历史可追溯到Torch。Torch于2002年诞生于纽约大学

    作者: TiAmoZhang
    发表时间: 2023-03-16 07:53:51
    749
    0
  • 深度学习模型结构

    者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: QGS
    646
    2
  • 深度学习模型结构

    目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: 运气男孩
    1146
    2
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    为模型的深度。另一方面,深度概率模型中,也把描述概念之间如何相互关联的图的深度而非计算图的深度记为一种模型的深度。值得注意的是,后者用来计算表示的计算图可能比概念图要深得多。鉴于这两种观点的共存,一般一个模型有多深才算作“深度”模型上并没有达成共识。不过一般深度学习指的是比传

    作者: QGS
    946
    0
  • 深度学习之过拟合

    然而,经验风险最小化很容易导致过拟合。高容量的模型会简单地记住训练集。很多情况下,经验风险最小化并非真的可行。最有效的现代优化算法是基于梯度下降的,但是很多有用的损失函数,如 0 − 1 损失,没有有效的导数(导数要么为零,要么处处未定义)。这两个问题说明,深度学习中我们很少使用经验风险最小化。反之,我们

    作者: 小强鼓掌
    335
    1
  • 深度学习之噪声

    的整流线性隐藏单元可以简单地学会使 hi 变得很大(使增加的噪声 ϵ 变得不显著)。乘性噪声不允许这样病态地解决噪声鲁棒性问题。另一种深度学习算法——批标准化,训练时向隐藏单元引入加性和乘性噪声重新参数化模型。批标准化的主要目的是改善优化,但噪声具有正则化的效果,有时没必要再使用Dropout。

    作者: 小强鼓掌
    1045
    3
  • 深度学习VGG网络

    为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。简单来说,VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网

    作者: 我的老天鹅
    579
    16
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。

  • 深度学习历史

    the wake-sleep algorithm, co-developed with Peter Dayan and Hinton.[37] Many factors contribute to the slow speed, including the vanishing

    作者: liupanccsu
    发表时间: 2022-08-04 01:52:38
    166
    0
  • 深度学习的概念

    这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,语音和图像识别方面取得的效果,远远超过先前相关技术。 深度学习搜索技术,数据挖掘,机器

    作者: 某地瓜
    1859
    1
  • 深度学习随机取样、学习

    性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被

    作者: 运气男孩
    1444
    5
  • 深度学习之动量

    矩阵)。横跨轮廓的红色路径表示动量学习规则所遵循的路径,它使该函数最小化。我们该路径的每个步骤画一个箭头,表示梯度下降将在该点采取的步骤。我们可以看到,一个病态条件的二次目标函数看起来像一个长而窄的山谷或具有陡峭边的峡谷。动量正确地纵向穿过峡谷,而普通的梯度步骤则会浪费时间峡谷的窄轴上来回移动。比较图

    作者: 小强鼓掌
    530
    3
  • 深度学习时序图网络

    为它们能够学习复杂的关系系统或相互作用,这些关系或作用来源于生物学和粒子物理学到社会网络和推荐系统等广泛问题。尽管图上进行深度学习的不同模型太多了,但迄今为止,很少有人提出方法来处理呈现某种动态性质的图(例如,随着时间的推移而进化的特征或连通性)。本文中,我们提出了时序图网络

    作者: QGS
    763
    1
  • 深度学习深度模型中的优化

    深度学习算法许多情况下都涉及到优化。例如,模型中的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    338
    1
  • 深度学习之PCA

    除数据中未知变动因素的简单表示实例。PCA中,这个消除是通过寻找输入空间的一个旋转(由 W 确定),使得方差的主坐标和 z 相关的新表示空间的基对齐。虽然相关性是数据元素间依赖关系的一个重要范畴,但我们对于能够消除特征依赖更复杂形式的表示学习也很有兴趣。对此,我们需要比简单线性变换能做到更多的工具。

    作者: 小强鼓掌
    541
    1
  • 深度学习-语义分割

    本质上即为每个类别创建一个输出通道。因为上图有5个类别,所以网络输出的通道数也为5,如下图所示:如上图所示,预测的结果可以通过对每个像素深度上求argmax的方式被整合到一张分割图中。进而,我们可以轻松地通过重叠的方式观察到每个目标。argmax的方式也很好理解。如上图所示,每

    作者: @Wu
    642
    0
  • 深度残差收缩网络:一种深度学习的故障诊断算法

    着大量的噪声。处理强噪声振动信号的时候,深度残差网络的特征学习能力经常会降低。深度残差网络中的卷积核,其实就是滤波器,噪声的干扰下,可能不能检测到故障特征。在这种情况下,输出层所学习到的高层特征,就会判别性不足,不能够准确地进行故障分类。因此,开发新的深度学习方法,应用于强

    作者: hw9826
    发表时间: 2020-08-31 11:54:08
    4310
    0
  • 学习深度学习是否要先学习机器学习

    学习深度学习是否要先学习完机器学习,对于学习顺序不太了解

    作者: 飞奔的野马
    5979
    23