检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
限制。这种场景下,建议找到原始镜像重新构建环境进行保存。 解决方法 找到原始镜像重新构建环境。建议使用干净的基础镜像,最小化的安装运行依赖内容,并进行安装后的软件缓存清理,然后保存镜像。 父主题: 自定义镜像故障
找并订阅相应的场景化AI案例。订阅后可以一键运行案例。 AI Gallery中分享的案例支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据和模型。 订阅并使用AI案例 登录“AI
Standard开发平台的训练作业、部署模型以及开发环境时,可以使用Standard专属资源池的计算资源。使用前,您需要先购买创建一个专属资源池。 公共资源池:公共资源池提供公共的大规模计算集群,根据用户作业参数分配使用,资源按作业隔离。 用户下发训练作业、部署模型、使用开发环境实例等,均
让零AI基础的业务开发者可快速完成模型的训练和部署。 ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型
计费说明 在ModelArts进行AI全流程开发时,会产生计算资源的计费,计算资源为进行运行自动学习、Workflow、开发环境、模型训练和部署服务的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 专属资源池 使用计算资源的用量。 具
通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet适配到昇腾卡进行训练,可以提高能效、支持更大模型和多样化部署环境,提升昇腾云在图像生成和编辑场景下的竞争力。 本章节介绍SDXL&SD 1.5模型的Controlnet训练过程。 Step1 处理fill50k数据集
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
在资源池详情页的右上角,单击“更多>扩缩容”,在资源池扩缩容页面可以查看该资源规格中携带的系统盘、容器盘、数据盘的磁盘类型、大小、数量和写入模式、容器引擎空间大小、挂载路径磁盘配置等参数。 父主题: 管理Standard专属资源池
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
oken,可以降低时延。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址,默认为None,举例:参数可以设置为0.0.0.0。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用
自动学习 准备数据 模型训练 部署上线 模型发布
DeepSeek系列模型推理 DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导
ModelArts Studio大模型即服务平台已预置非量化模型与AWQ-W4A16量化模型的模型模板。 非量化模型可以支持调优、压缩、部署等操作。 量化模型仅支持部署操作。当需要获取SmoothQuant-W8A8量化模型时,则可以通过对非量化模型进行模型压缩获取。
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
Edge 在ModelArts中使用边缘节点部署边缘服务时能否使用http接口协议?
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取账号名和ID和获取用户名和用户ID。 已准备好PyTorch框架的训练代码,例如将启动文件“test-pytorch
|── alpaca_gpt4_data.json # 微调数据文件 在ECS服务器中安装obsutil工具,具体命令可参考obsutil工具快速使用,将OBS桶中的数据下载至SFS Turbo中。注意:需要使用用户账号中的AK