检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调用边缘模型 调用边缘模型的步骤与使用“在线部署”调用模型的步骤相同,具体步骤请参考使用API调用模型。 父主题: 部署为边缘服务
准备工作 注册华为账号并开通华为云 购买盘古大模型套件 开通盘古大模型服务 配置盘古访问授权 创建子用户并授权使用盘古
5汉字。 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。
提示词写作实践 提示工程介绍 常用方法论 进阶技巧 写作示例
部署盘古大模型 部署为在线服务 部署为边缘服务
图3 前往OBS 在OBS控制台页面,单击界面右上角“创建桶”。 图4 OBS页面 创建OBS桶时,桶区域需要与盘古大模型区域保持一致。其余配置参数可以使用默认值,详细OBS桶参数说明请参见OBS用户指南。 图5 创建OBS桶 参数填选完成后,单击“立即创建”。创建好的OBS桶将显示在桶列表中。
训练盘古大模型 选择模型与训练方法 创建训练任务 查看训练任务详情与训练指标 常见训练报错与解决方案
载该obs文件,上传到环境B对应的obs桶中。 登录环境B的盘古大模型套件平台,在“模型迁移”页面,选择“导入模型”,输入模型对应的obs地址和模型名称后,单击“确定”,启动导入模型任务。 图4 导入模型
务的难度较大时,该问题将愈加显著。 当然,如果您的可用数据很少,也可以采取一些方法来扩充您的数据,从而满足微调要求,比如: 数据增强:在传统机器学习中,可以通过简单的重复上采样方式来扩充数据,但该方法不适用于大模型微调的场景,这将导致模型的过拟合。因此可以通过一些规则来扩充数据,
Token计算精确到1K Tokens,不足1K Tokens的部分舍去,按小时自动扣费。 变更配置 盘古NLP大模型的模型订阅服务和推理服务默认采用包周期计费,训练服务则默认采用按需计费。使用周期内不支持变更配置。 欠费 在使用云服务时,如果账户的可用额度低于待结算账单金额,即被判定为账户欠费
本场景采用了下表中的推理参数进行解码,您可以在平台部署后参考如下参数调试: 表3 推理核心参数设置 推理参数 设置值 最大Token限制(max_token) 4096 温度(temperature) 0.3 核采样(top_p) 1.0 话题重复度控制(presence_penalty) 0 部署推理服务后,可以
通过访问密钥(AK/SK)认证方式进行认证鉴权,即使用Access Key ID(AK)/Secret Access Key(SK)加密的方法来验证某个请求发送者身份。 父主题: 安全
安装SDK(Java SDK) Maven中央仓导入 在项目pom.xml中参考以下方式添加依赖。 <dependency> <groupId>com.huaweicloud</groupId> <artifactId>pangu-kits-app-dev-java</artifactId>
版本选择3.9。 在whl包同级目录下,执行如下命令安装: pip install pangu_kits_app_dev_py-2.4.0-py3-none-any.whl 安装可选 安装全部依赖项(2.1.0以前版本需手动安装langchain-openai,命令pip install
据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法 规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标题、关键词、简介等结构化信息,可以将有监督的问题设置为
步处理并最终输出答案,展示在前端界面。 在该框架中,query改写模块、中控模块和问答模块由大模型具体实现,因此涉及到大模型的训练、优化、部署与调用等流程。pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Sea
洗流程的搭建,搭建过程中可以通过“执行节点”功能查看算子对数据的清洗效果。算子功能的详细介绍请参见清洗算子功能介绍。 图3 执行节点 用户配置算子后推荐增加、显示备注信息,用于团队其他成员快速了解算子编排。 图4 增加并显示备注信息 对于搭建满意的清洗流程,可以“发布模板”,后续
任务的Prompt可以保持固定。注意,这里Prompt保持固定和保证数据多样性,二者并不冲突。 当然,如果您的数据质量较差,也可以采取一些方法来提升数据质量,比如: 数据清洗:您可以通过一些简单基础的规则逻辑来过滤异常数据,比如,去空、去重、字符串过滤等。同时,您也可以采用PPL
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、部署、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域: 西南-贵阳一 开发盘古NLP大模型 开发盘古科学计算大模型 压缩盘古大模型 部署盘古大模型 调用盘古大模型