检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
--output-prefix:处理后的数据集保存路径+数据集名称(例如:alpaca_gpt4_data)。 --tokenizer-type:tokenizer的类型,可选项有['BertWordPieceLowerCase','BertWordPieceCase','GPT2BPETokenizer'
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
manifest_info.save(path, session=session, save_mode="a") 参数说明 表1 请求参数 参数 是否必选 参数类型 描述 path 是 String Manifest文件保存路径。 session 否 Object 会话对象,初始化方法请参见Session鉴权。
Finetune训练使用单机8卡资源。 Lora训练使用单机单卡资源。 Controlnet训练使用单机单卡资源。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称
Finetune训练使用单机8卡资源。 Lora训练使用单机单卡资源。 Controlnet训练使用单机单卡资源。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
909) FLUX.1基于DevServer适配PyTorch NPU推理指导(6.3.909) Hunyuan-DiT基于DevServer部署适配PyTorch NPU推理指导(6.3.909) InternVL2基于DevServer适配PyTorch NPU训练指导(6.3.909)
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
Baichuan3-13B(PyTorch)基于DevServer训练指导 推理参考文档: 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:ascendcloud-aigc Controlnet插件支持NPU推理(适配ComfyUI) Open-Clip模型昇腾适配
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
duleNotFoundError: No module named 'tyro'" 错误截图: 报错原因:未指定tyro依赖包版本,导致安装依赖为最新0.9.0版本导致与其他依赖冲突 解决措施:任务前容器内更新'tyro'版本为0.8.14或以下版本 pip install tyro==0
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
mistral-7b 说明: 当前版本不支持推理量化功能(W4A16,W8A8) 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:AscendCloud-3rdAIGC SDXL模型: Fine-tuning微调支持Standard及DevServer模式
可视化作业的日志存储路径。 job_id Long 可视化作业的ID。 resource_id String 可视化作业的计费资源ID。 请求示例 如下以查询正在部署中的作业,按递增排序,显示第1页前10个可视化作业为例。 GET https://endpoint/v1/{project_id}/visualization-jobs
ModelArts公共资源池的容器引擎空间为50G,专属资源池的容器引擎空间的默认为50G,支持在创建专属资源池时自定义容器引擎空间。 确定错误类型 提示找不到文件等错误,请参见训练作业日志中提示“No such file or directory”。 提示找不到包等错误,请参见训练作业日志中提示“No
-H, -h, --help Show this message and exit. 表1 参数说明 参数名 参数类型 是否必选 参数说明 -d / --drop-last-dir Bool 否 如果指定,在复制文件夹时不会将源文件夹最后一级目录复制至目的文件夹下,仅对文件夹复制有效。