检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
父主题: GPU推理业务迁移至昇腾的通用指导
图2 torch_npu导入 自动迁移完成GPU代码到昇腾的快速适配。
请将完整的SWR地址复制到这里即可,或单击可直接从SWR选择自有镜像进行注册,类型加上“GPU”,如图1所示。 图1 注册镜像 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间 > Notebook”,进入“Notebook”列表页面。
当用户将大语言模型或者其他类型深度神经网络的训练从GPU迁移到昇腾AI处理器时,可能出现以下不同现象的模型精度问题。一般包括: Loss曲线与CPU/GPU差异不符合预期。 验证准确度与CPU/GPU差异不符合预期。
迁移流程 模型迁移主要指将开源社区中实现过的模型或客户自研模型迁移到昇腾AI处理器上,需要保证模型已经在CPU/GPU上运行成功。迁移到昇腾AI处理器的主要流程如下图所示。 图1 迁移流程 父主题: GPU训练业务迁移至昇腾的通用指导
图2 生成图片 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
图1 指定CUDA Toolkit软件版本 选择对应的版本,下载CUDA软件包。 父主题: 管理GPU加速型ECS的GPU驱动
模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
适用于执行推理时,每次处理图片宽和高不固定的场景,该参数需要与input_shape配合使用,input_shape中-1的位置为动态分辨率所在的维度。使用方法可参考Ascend配置文件说明。 父主题: 模型适配
python parse_models_shape.py 可以看到获取的shape信息如下图所示。 图1 shape信息 PyTorch模型转换为Onnx模型(可选) 获取onnx模型有以下两种方式。下文介绍如何通过方式一进行操作。如果采用方式二,可以跳过此步骤。
父主题: 基于ModelArts Standard运行GPU训练作业
对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite pipeline输出的结果图片进行对比,在这里保证输入图片及文本提示词一致。如果差异较为明显可以进行模型精度调优。
常见的超参如下图所示: 图1 训练超参数 模型的超参通常可能调整的主要有学习率、batch size、并行切分策略、学习率warm-up、模型参数、FA配置等。用户在进行NPU精度和GPU精度比对前,需要保证两边的配置一致。
--device=Ascend --numThreads=1 --parallelNum=1 --workersNum=1 --warmUpLoopCount=100 --loopCount=100 图1 调优前模型 图2 调优后模型 AOE优化成功的mindir已经融合了优化的知识库
本文将演示在云容器实例中创建GPU类型的负载,以tensorflow的图像分类为示例,演示在容器中直接使用GPU训练一个简单的神经网络。
图1 netron中查看inputShape 精度选择。 精度选择需要在模型转换阶段进行配置,执行converter_lite命令时通过--configFile参数指定配置文件路径,配置文件通过precision_mode参数指定精度模式。
MindSpore Lite问题定位指南 在MindSpore Lite使用中遇到问题时,例如模型转换失败、训练后量化转换失败、模型推理失败、模型推理精度不理想、模型推理性能不理想、使用Visual Studio报错、使用Xcode构建APP报错等,您可以先查看日志信息进行定位分析
lspci -d 10de: 图1 安装结果 如果安装完lspci后,安装结果显示命令不存在,可通过重启云服务器来解决。 父主题: 云监控插件(Agent)
请将完整的SWR地址复制到这里即可,或单击可直接从SWR选择自有镜像进行注册,类型加上“GPU”,如图1所示。 图1 注册镜像 登录ModelArts管理控制台,在左侧导航栏中选择“开发空间 > Notebook”,进入“Notebook”列表页面。