检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化
计费样例 计费场景一 某用户于2023/03/18 15:30:00使用一个按需计费的公共资源池进行训练,规格配置如下: 规格:CPU: 8 核 32GB (modelarts.vm.cpu.8ud) 计算节点个数:1个 用了一段时间后,于2023/03/20 10:30:00停
--cosineDistanceThreshold=0.99 其中,--accuracyThreshold=5表示平均绝对误差的容忍度最大为5%,--cosineDistanceThreshold =0.99表示余弦相似度至少为99%,--inputShapes可将模型放入到netron官网中查看。
弹性集群”,选择创建的专属资源池。 图1 查看专属资源池 在专属池详情页可查看驱动及固件版本。如下图显示Ascend驱动为7.1.0.7.220-23.0.5,表示固件版本为7.1.0.7.220,驱动版本为23.0.5。 图2 查看专属池驱动 创建OBS桶 ModelArts使用对象存储服务(Object
y > 我的资产 > Workflow”,进入“我的Workflow”页面。 单击“我的订阅”,进入个人订阅的Workflow列表。 在“我的订阅”列表,选择需要导入的Workflow,单击“应用控制台”旁的“Workflow”。 图2 选择应用控制台 在弹出来的对话框中选择、填
pyterLab中下载大于100MB的文件到本地。 从JupyterLab中下载不大于100MB的文件至本地 在JupyterLab文件列表中,选择需要下载的文件,单击右键,在操作菜单中选择“Download”下载至本地。 下载的目的路径,为您本地浏览器设置的下载目录。 图1 下载文件
推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 表1 环境要求 名称 版本 CANN cann_8.0.rc2 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-3rdAIGC-6
OBS复制过程中提示“BrokenPipeError: Broken pipe” 问题现象 训练作业在使用MoXing复制数据时,日志中出现报错“BrokenPipeError: [Errno xx] Broken pipe”。 原因分析 出现该问题的可能原因如下: 在大规模分布
orce_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workforce_id 是 String 标注团队ID。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数
/v2/{project_id}/datasets/{dataset_id}/workforce-tasks/{workforce_task_id} 表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String
install nfs-common 获取SFS Turbo的挂载命令。 进入弹性文件服务SFS管理控制台。 选择“SFS Turbo”进入文件系统列表,单击文件系统名称,进入详情页面。 在“基本信息”页签获取并记录“Linux挂载命令”。 在ECS服务器中挂载NFS存储。 首先保证对应目录存在,然后输入对应指令即可。命令参考:
6的运行环境搭载的TensorFlow版本为1.8.0。 python3.6、python2.7、tf2.1-python3.7,表示该模型可同时在CPU或GPU运行。其他Runtime的值,如果后缀带cpu或gpu,表示该模型仅支持在CPU或GPU中运行。 默认使用的Runtime为python2.7。 默认启动命令:sh
资源规格要求 推荐使用“西南-贵阳一”Region上的Cluster资源 表1 环境要求 名称 版本 CANN cann_8.0.rc2 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6
Server资源配置流程 在开通Lite Server资源后,需要完成相关配置才能使用,配置流程如下图所示。 图1 Lite Server资源配置流程图 表1 Server资源配置流程 配置顺序 配置任务 场景说明 1 配置Lite Server网络 Server资源开通后,需要进行网络配置,才
model:模型启动模式,可选vllm,openai或hf,hf代表huggingface。 tasks:评测数据集任务,比如openllm。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度,默认使用auto,代表自动选择batch大小。 output_path:结果保存路径。
要创建的文件夹列表如表1所示,示例中的桶名称“test-modelarts” 和文件夹名称均为举例,请替换为用户自定义的名称。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。 请确保您使用的OBS与ModelArts在同一区域。 表1 OBS桶文件夹列表 文件夹名称 用途
URI POST /v2/{project_id}/datasets/{dataset_id}/tasks/{task_id}/stop 表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String
录下。 gallery-cli download {repo_id} {文件名} 如下所示,表示下载文件“config.json”到服务器的缓存目录“/test”下,当回显“100%”时表示下载完成。 gallery-cli download ur5468675/test_cli_model1
Snt9B硬件,完成SDXL LoRA训练。 获取软件和镜像 表1 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.908软件包中的AscendCloud-AIGC-6.3.908-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E
obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置