检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
删除实例,避免产生不必要的费用 。 如果您购买了套餐包,可优先选择您对应规格的套餐包,在“配置费用”页签会显示您的套餐余量,以及超出的部分如何计费,请您关注,避免造成不必要的资源浪费。 节点配置 数据标注参数配置 labeling_input:选择预先创建的数据集即可,版本可以不用选择。
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
LoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 LoRA+(Efficient Low Rank Adaptation
索引,此处可以根据此时间进行搜索。可选值如下: month:搜索往前30天至今天内添加的样本 day:搜索昨天(往前1天)至今天内添加的样本 yyyyMMdd-yyyyMMdd:搜索指定时间段内添加的样本,格式为“起始日期-结束日期”,查询天数不能超过30天。例如:“201909
JobEngine(image_url="fake_image_url"), # 自定义镜像的url,格式为:组织名/镜像名称:版本号,不需要携带相应的域名地址;如果image_url需要设置为运行态可配置,则使用如下方式:image_url=wf.Placeholder(name="image_url"
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
查询模型列表 示例代码 在ModelArts Notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景1:查询当前用户所有模型 1 2 3 4 5 6 from modelarts.session import Session
storages=[input_storage, output_storage] # 注意在整个工作流中使用到的Storage对象需要在这里添加 ) 开发态配置 调用工作流对象的run方法,在开始运行时展示输入框,等待用户输入,如下所示: 图1 等待用户输入 要求用户输入已存在的路
aMA-Factory/data 【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 template qwen 必须修改。用于指定模板。如果设置为"qwen",则使用QWEN模板进行训练,模板选择可参照表1中的template列
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数即其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
推理专属预置镜像列表 ModelArts的推理平台提供了一系列的基础镜像,用户可以基于这些基础镜像构建自定义镜像,用于部署推理服务。 X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(cuda10
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
存储容量,EVS默认5G,EFS默认50G,最大限制4096G。 category String 支持的存储类型。不同存储类型的差异,详见开发环境中如何选择存储。枚举值如下: SFS:弹性文件服务 EVS:云硬盘 mount_path String 存储挂载至Notebook实例的目录,当
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>: