检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。
清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个
起报时间间隔小时数,默认6。取值范围:[1, 24]。 forecast_lead_hours 否 Long 预报未来小时数,默认168。如需预报未来30天,可将此参数设置成720。 draw_figures 否 String 是否输出结果图片,取值true/false,默认true。 forecast_features
操作流程 登录ModelArts Studio大模型开发平台,进入所需空间。 单击左侧“能力调测”,进入“文本对话”页签,选择服务与人设,参数设置为默认参数,在输入框输入问题,单击“生成”,模型将基于问题进行回答。 图1 使用预置服务进行文本对话 可以尝试修改参数以查看模型效果,示例如下:
量信息,候选提示词中关联的变量也会进行展示,候选提示词相关操作请参见设置候选提示词。 同一个提示词工程中,定义的变量不能超过20个。 在“模型”区域,单击“设置”,设置提示词输入的模型和模型参数。 图4 模型设置 父主题: 撰写提示词
因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际
于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据
d,可获取任务ID参数值。 在Postman中新建一个GET请求,填入域名(将步骤2中获取的URL去除末尾的“/tasks”即为该域名),设置请求Header参数和任务ID参数。单击Postman界面的“Send”发送请求,以获取科学计算大模型的调用结果。 查询科学计算大模型调用详情API
自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 4 学习率(learning_rate) 7.5e-05 学
Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。 产品介绍 立即使用 在线体验 图说ECS 成长地图 由浅入深,带您玩转盘古大模型 01 了解 了解盘古大模型的概念、优势、应用场景以及模型能力与规格,您将更全面地掌握其强大功能,
推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而
型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减的最小值。计算公式为:最小学习率=学习率*学习率衰减比率。 参数的选择没有标准答案,您需要根据任务的实际情况进行调整,以上建议值仅供参考。
的列表供选择。 单击“确定”,完成参数配置。 配置大模型组件 大模型组件提供了使用LLM的能力,用户可以通过在UI界面上编写Prompt、设置LLM的参数来让LLM完成指定的任务。 单击画布中的“大模型”组件,打开参数配置页面。 图5 查看大模型组件参数配置 在“参数配置”中,配置输入和输出参数。
查看对应编程语言类型的SDK代码。 图1 获取SDK代码示例 当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 >
在“来源数据集”分页,选择“文件内容”为“单轮问答”的数据集,填写数据集名称和描述,单击“下一步”。 图2 选择数据集 在加工步骤编排页面展示了预先设置好的开始、结束步骤。在左侧“添加算子”分页可选择合适的算子,如个人数据脱敏、文本长度过滤等。 导入的数据集格式为“JSONL”,因此默认添加了JSON内容提取算子。
如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content 是 String 对话的内容,可以是任意文本,单位token。 设置多轮对话时,message中content个数不能超过20。
图2 标注管理 在“创建标注任务”页面选择需要标注的加工后的文本类数据集,并设置标注项。 设置标注项时,不同类型的数据文件对应的标注项也有所差异,可基于页面提示进行设置。 图3 创建标注任务 单击“下一步”设置标注人员及信息,单击“完成创建”。 分配标注任务时,可以选择是否启用多人标
后的图片类数据集,并设置标注项。 当选择“图片Caption”标注项时,可以设置使用AI大模型对数据集进行预标注。启动预标注将会借助AI模型生成标注内容,这些内容不会覆盖原始数据集,仅作为标注人员的参考,以提高标注效率。 图3 创建标注任务 单击“下一步”设置标注人员及信息,单击“完成创建”。
后的视频类数据集,并设置标注项。 当选择“视频Caption”标注项时,可以设置使用AI大模型对数据集进行预标注。启动预标注将会借助AI模型生成标注内容,这些内容不会覆盖原始数据集,仅作为标注人员的参考,以提高标注效率。 图3 创建标注任务 单击“下一步”设置标注人员及信息,单击“完成创建”。
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型