检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
典型训练问题和优化策略 什么情况下需要微调 什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优
务的难度也较高,通用模型的回答可能无法达到预期,此时建议采用目标任务的数据进行微调,以提升模型回答的准确性。 父主题: 典型训练问题和优化策略
人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来获取数据。 父主题: 典型训练问题和优化策略
或者分布不均衡,导致训练过程不稳定。你可以尝试提升数据质量的方式来解决。 图5 异常的Loss曲线:异常抖动 父主题: 典型训练问题和优化策略
确实能从一定程度上提升效果,但如果综合考虑训练的耗时和模型后续的持续迭代,采用搜索+问答的方案则更具性价比。 父主题: 典型训练问题和优化策略
如何调整训练参数,使模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的模型,回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大
回答,可以将“温度”置为0。 参数的选择没有标准答案,您需要根据任务的实际情况进行调整,以上建议值仅供参考。 父主题: 典型训练问题和优化策略
人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。 父主题: 典型训练问题和优化策略
人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来清洗数据。 父主题: 典型训练问题和优化策略
轮数的增加,模型出现了遗忘,可以检查构造的训练数据中轮数是否普遍较少,建议根据实际情况增加数据中的对话轮数。 父主题: 典型训练问题和优化策略
不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 典型训练问题和优化策略
为什么微调后的模型,只能回答在训练样本中学过的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘
为什么微调后的模型,评估结果很好,但实际场景表现却很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景
拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 父主题: 典型训练问题和优化策略
为什么微调后的模型,回答总是在重复某一句或某几句话 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“
的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题: 典型训练问题和优化策略
为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来
模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。 父主题: 典型训练问题和优化策略