检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串
“连接器类型”选择MySql和ORACLE时,呈现此参数。根据实际情况设置即可。 数据库名称 “连接器类型”选择ORACLE时,呈现此参数。根据实际情况设置即可。 数据库服务器 “连接器类型”选择ORACLE时,呈现此参数。用户根据实际情况设置。 端口 “连接器类型”选择ORACLE时,呈现此参数。用户根据实际情况设置。
":30603", "error_msg" : "" } 状态码 状态码 描述 200 可信计算节点详情 401 操作无权限 500 内部服务器错误 父主题: 可信计算节点管理
模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算
场景描述 某企业A在进行新客户营销时的成本过高,想要通过引入外部数据的方式提高营销的效果,降低营销成本。 因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
项目ID 获取项目ID 项目ID表示租户的资源,账号ID对应当前账号。用户可在对应页面下查看不同Region对应的项目ID和账号ID。 注册并登录管理控制台。 在用户名的下拉列表中单击“我的凭证”。 在“API凭证”页面,查看账号名和账号ID,在项目列表中查看项目ID。 调用API获取项目ID
"2022-02-17T06:49:08.035+00:00" } ] } 状态码 状态码 描述 200 数据集列表展示成功 401 操作无权限 500 内部服务器错误 父主题: 数据集注册管理
"SUCCEEDED", "result_ext" : "" } 状态码 状态码 描述 200 查询执行结果成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理
调用说明 可信智能计算服务TICS提供了REST(Representational State Transfer)风格API,支持您通过HTTPS请求调用。 空间API的调用方法与其他云服务接口调用方法类似,依赖服务终端节点Endpoint,但不支持AK/SK鉴权认证。详情请参见构造请求。
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
"2022-02-25T03:12:09.296+00:00" } 状态码 状态码 描述 200 查询通知列表成功 401 操作无权限 500 内部服务器错误 父主题: 通知管理
TICS使用流程简介 本文档是一个TICS入门教程,介绍了如何在TICS控制台完成端到端的全流程使用。 可信智能计算服务TICS( Trusted Intelligence Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数
基本概念 账号 用户的账号对其所拥有的资源及云服务具有完全的访问权限,可以重置用户密码、分配用户权限等。为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而是创建用户并使用用户进行日常管理工作。 用户 由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
LINEITEM_1000W" } 响应示例 无 状态码 状态码 描述 200 保存多方安全计算作业成功 401 操作无权限 500 内部服务器错误 父主题: 多方安全计算作业管理
使用TICS多方安全计算进行联合样本分布统计 场景描述 准备数据 发布数据集 创建样本分布统计作业 执行样本分布联合统计 数据优化 父主题: 纵向联邦建模场景