检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在Notebook中通过镜像保存功能制作自定义镜像 通过预置的镜像创建Notebook实例,在基础镜像上安装对应的自定义软件和依赖,在管理页面上进行操作,进而完成将运行的实例环境以容器镜像的方式保存下来。镜像保存后,默认工作目录是根目录“/”路径。 保存的镜像中,安装的依赖包不丢失,持久化存储的部分(home/ma-
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface
”,表示服务数量超限。 正常情况下,单个用户最多可创建20个在线服务。可采取以下方式处理: 删除状态为“异常”的服务。 删除长期不使用的服务。 因业务原因需申请更大配额,可提工单申请扩容。 父主题: 在线服务
checkpoints是Notebook的关键字,如果用户创建文件夹命名为checkpoints,则在JupyterLab上无法打开、重命名和删除。此时可以在Terminal里使用命令行打开checkpoints,或者新建文件夹将checkpoints里的数据移动到新的文件夹下。 图1 Jupy
audio”的报错。 完成参数填写后,根据界面提示完成批量服务的部署。部署服务一般需要运行一段时间,根据您选择的数据量和资源不同,部署时间将耗时几分钟到几十分钟不等。 批量服务部署完成后,将立即启动,运行过程中将按照您选择的资源按需计费。 您可以前往批量服务列表,查看批量服务的基本情况
钟。此处仅介绍关键参数,更多详细参数解释请参见部署在线服务。 图3 部署在线服务 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 图4 服务部署完成 Step4 调用在线服务 进入在线服务详情页面,选择“预测”,设置请求路径:“/generat
公共资源池容器Docker size的大小最大支持50G,专属资源池Docker size的大小最大支持50G。 如果使用的是OBS导入或者训练导入,则包含基础镜像、模型文件、代码、数据文件和下载安装软件包的大小总和。 如果使用的是自定义镜像导入,则包含解压后镜像和镜像下载文件的大小总和。 父主题:
委托授权ModelArts云服务使用SFS Turbo 本章节介绍如何配置ModelArts委托权限,允许用户使用专属资源池的网络中的“关联sfsturbo”和“解除关联”功能。 场景介绍 对于使用ModelArts专属资源池的用户,在控制台创建完网络后,在网络列表页“操作 >
查看推理服务 在在线推理服务列表页面,单击服务操作列的“服务详情”(如果是“运行中”的推理服务,则需要单击操作列的“更多 > 服务详情”),可以在弹窗中查看推理服务的“服务信息”、“服务日志”和“指标效果”。 停止推理服务 当“运行中”的推理服务使用完成后,在在线推理服务列表页面,单击操作列的“更多
在线服务预测报错ModelArts.4206 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,报错“ModelArts.4206”。 原因分析 ModelArts.4206表示该API的请求流量超过了设定值。为了保证服务的平稳运行,ModelArts
在需要查看的事件左侧,单击展开该事件的详细信息。 单击需要查看的事件“操作”列的“查看事件”,可以在弹窗中查看该操作事件结构的详细信息。 更多关于云审计服务事件结构的信息,请参见《云审计服务用户指南》。 父主题: 使用CTS审计ModelArts服务
查询服务监控信息 查询当前服务对象监控信息。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象进行查询服务监控 1 2 3 4 5 6 7 from
Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限的问题;另一方面,增量训练节约了重新
数,更多详细参数解释请参见部署在线服务。 图3 部署在线服务-专属资源池 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 若以vllm接口启动服务,设置请求路径:“/generat
以提升资源池整体的SLA,有效避免单个节点故障造成的业务受损。用户可以根据自身业务的可靠性要求设置池内的高可用节点数量。 高可用冗余节点不能用于业务运行,将影响资源池的实际可用节点数量。资源池下发任务时,请注意选择实际可用的节点数量,当选择的节点数未剔除资源池的高可用冗余节点数时,会导致任务持续等待。
ion的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
表1 预测结果中的参数说明 参数 说明 predicted_label 表示图片预测的标签。 scores 表示Top5标签的预测置信度。 由于“运行中”的在线服务将持续耗费资源,如果不需再使用此在线服务,建议在“在线服务”的操作列单击“更多>停止”,避免产生不必要的费用。如果需要继续使用此服务,可单击“启动”恢复。
服务状态一直处于“部署中” 问题现象 服务状态一直处于“部署中”,查看AI应用日志未发现服务有明显错误。 原因分析 一般情况都是AI应用的端口配置有问题。建议您首先检查创建AI应用的端口是否正确。 处理方法 AI应用的端口没有配置,默认为8080,如您在自定义镜像配置文件中修改了
ion的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0