检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
OD中介中心度(od_betweenness)(2.2.4) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 directed 否 是否考虑边的方向 Boolean true或者false true weight 否 边上权重 String 空或字符串
k跳算法(k_hop) 功能介绍 根据输入参数,执行k跳算法。 k跳算法从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点及其个数。 URI POST /ges/v1.0/{project
最短路径(shortest_path) 表1 parameters参数说明 参数 是否必选 类型 说明 source 是 String 输入路径的起点ID。 target 是 String 输入路径的终点ID。 directed 否 Boolean 是否考虑边的方向,取值为true。
查看某个图的备份列表(1.0.0) 功能介绍 查询某个图下的备份列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1.0/{project_id}/
单源最短路算法(sssp) 功能介绍 根据输入参数,执行单源最短路算法。 单源最短路算法是对于给定一个节点(称为源),给出从该源节点出发到其余各节点的最短路径长度。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
Filtered-query 包名 样例类名 对应的API com.huawei.ges.graph.sdk.v1.examples.filteredquery FilteredQuerySample Filtered-query FilteredQueryV2Sample Filtered-query
边中介中心度(edge_betweenness) 功能介绍 根据输入参数,执行边中介中心度算法。 边中介中心度算法(edge_betweenness)以经过某条边的最短路径数目来刻画边重要性的指标。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
点集共同邻居(common_neighbors_of_vertex_sets)(2.2.13) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources(2.2.6) 是 起点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:“Alice
初始化参数获取 参数名 参数值说明 获取方式 备注 regionCode 当前区域,比如华北-北京四的区域为cn-north-4 您可以从地区和终端节点中查询服务的区域。 - projectId 创建图实例的项目ID 登录管理控制台后,在页面右上角单击用户名,然后在下拉列表中单击“我的凭证”,进入“我的凭证”页面。
按文件更新/删除数据 包名 样例类名 对应的API com.huawei.ges.graph.sdk.v1.examples.fileoperation ImportPropertiesSample 通过导入文件更新点边的指定属性 DeleteByFileSample 通过读取文件删除点边
聚类系数(cluster_coefficient)(1.0.0) 表1 response_data参数说明 参数 类型 说明 cluster_coefficient Double 聚类系数。 statistics Boolean 是否仅返回全图平局聚类系数,默认为true。 父主题:
点集最短路(shortest_path_of_vertex_sets)(2.1.5) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 sources 是 起点ID集合 String 标准csv格式,ID之间以英文逗号分隔,例如:“Alice,Nana”。
OD中介中心度(od_betweenness) 功能介绍 根据输入参数,执行OD中介中心度算法。 OD中介中心度算法(od_betweenness)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 URI POST /ges/v1.0/{p
标签传播算法(label_propagation) 功能介绍 根据输入参数,执行label_propagation算法。 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系
全最短路(all_shortest_paths) 功能介绍 根据输入参数,执行全最短路算法。 全最短路(all_shortest_paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间所有的最短路径。 URI POST /ges/v1.0/{project_id
连通分量(connected_component) 功能介绍 根据输入参数,执行连通分量(Connected Component)算法。 连通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强连通分量(strongly connected component),不
关联预测算法(link_prediction) 功能介绍 根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1
n_paths算法(n_paths) 功能介绍 根据输入参数,执行n_paths算法。 n_paths算法用于寻找图中两节点之间在层关系内的n条路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数
自定义图分析算法编程示例 自定义SSSP算法 # 导入必要的包 from hyg.analytics.graph import load_base_graph from hyg.analytics.model import pregel_types, PregelModel #