检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
请求推理服务 另外启动一个terminal,使用命令测试推理服务是否正常启动,端口请修改为启动服务时指定的端口。 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见表1。 方式一:通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker_ip}替换为
csv --backend:服务类型,如tgi,vllm,mindspore、openai。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径。 --dataset-type:支持三种
目录中。 启动文件 必填,选择代码目录中训练作业的Python启动脚本。 ModelArts只支持使用Python语言编写的启动文件,因此启动文件必须以“.py”结尾。 本地代码目录 仅当“代码来源”选择“对象OBS存储”时才显示该参数。 指定训练容器的本地目录,启动训练时系统会将代码目录下载至此目录。
请参考在ECS中创建ma-user和ma-group。 已经安装obsutil,请参考下载和安装obsutil。 参考线下容器镜像构建及调试章节,构建容器镜像并调试,镜像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。 准备数据 登录coco数据集下载
管理Lite Cluster节点 节点是容器集群组成的基本元素,在资源池详情页,单击“节点管理”页签,进行删除、重置、续费等操作。当把鼠标放在节点名称上方时,会显示资源ID,资源ID可用于查询账单或者在费用中心查询包周期资源的计费信息。 删除/退订/释放节点 若是“按需计费”的资
本。 安装Docker 部分Vnt1裸金属服务器的预置镜像中未安装Docker,您可参考以下步骤进行安装。 安装Docker。 curl https://get.docker.com | sh && sudo systemctl --now enable docker 安装NIVDIA容器插件。
bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 精度评测切换conda环境,确保之前启动服务为vllm接口,进入到benchmark_eval目录下,执行如下命令。 conda activate python-3
ep 60m”。这样启动的作业将会持续运行60分钟。您可通过Cloud Shell进入容器进行调试。 图5 自定义启动方式 出错的任务如何卡在运行中状态 创建训练作业时,启动命令末尾新增"|| sleep 5h",并启动训练作业,例如下方的cmd为您的启动命令: cmd || sleep
服务部署、启动、升级和修改时,拉取镜像失败如何处理? 问题现象 服务部署、启动、升级和修改时,拉取镜像失败。 原因分析 节点磁盘不足,镜像大小过大。 解决方法 首先考虑优化镜像,减小节点磁盘的占用。 优化镜像无法解决问题,请联系系统管理员处理。 父主题: 服务部署
er软件包。 步骤一:安装Docker 使用Docker官方脚本安装最新版Docker: curl https://get.docker.com | sh sudo systemctl --now enable docker 步骤二:安装NVIDIA容器工具集 设置仓库地址和GPG
建议保存的镜像大小不要超过35G,镜像层数不要超过125层,因为节点容器存储Rootfs差异(详细请参考容器引擎空间分配),可能会导致镜像保存失败。 如使用的是专属资源池,可尝试在“专属资源池>弹性集群”页面按需调整容器引擎空间大小,具体步骤请参考扩缩容专属资源池的“修改容器引擎空间大小”。 如果问题仍未解决,请联系技术支持。
建议保存的镜像大小不要超过35G,镜像层数不要超过125层,因为节点容器存储Rootfs差异(详细请参考容器引擎空间分配),可能会导致镜像保存失败。 如使用的是专属资源池,可尝试在“专属资源池>弹性集群”页面按需调整容器引擎空间大小,具体步骤请参考扩缩容专属资源池的“修改容器引擎空间大小”。 如果问题仍未解决,请联系技术支持。
已经上传benchmark验证脚本到推理容器中。如果在Step3 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过统一的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过统一的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。