检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建模型不同方式的场景介绍 AI开发和调优往往需要大量的迭代和调试,数据集、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。 ModelArts的模型可导入所有训练生成的元模型、上传至对象存储服务(OBS)中的元模型和容
迁移效果校验 在pipeline适配完成后,需要验证适配后的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite
快速开始 ModelArts SDK目前仅支持在ModelArts开发环境Notebook和本地PC两种环境使用。 ModelArts SDK不支持在训练作业和在线服务中使用。 ModelArts SDK已经集成在ModelArts开发环境Notebook中,可以直接使用,无需进行Session鉴权。
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时,资源不足如何处理?
解析Pascal VOC文件 解析xml文件支持本地和OBS,如果是OBS,需要Session信息。 PascalVoc.parse_xml(xml_file_path, session=None) 示例代码 指定xml路径,通过调用parse_xml来解析获取xml文件的信息。
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,VS Code打开后未进行远程连接 如果本地为Linux系统,见原因分析二。 原因分析一 自动安装VS Code插件ModelArts-HuaweiCloud失败。 解决方法一 方法一:检查VS Code网络是否正常。在VS
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
创建ModelArts数据校验任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在
推理部署使用场景 AI模型开发完成后,在ModelArts服务中可以将AI模型创建为模型,将模型快速部署为推理服务,您可以通过调用API的方式把AI推理能力集成到自己的IT平台,或者批量生成推理结果。 图1 推理简介 训练模型:可以在ModelArts服务中进行,也可以在您的本地
工作空间管理权限 表1 工作空间管理细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 创建工作空间 POST /v1/{project_id}/workspaces modelarts:workspace:create - √ √ 查询工作空间列表 GET
Standard模型训练 在ModelArts训练得到的模型欠拟合怎么办? 在ModelArts中训练好后的模型如何获取? 在ModelArts上如何获得RANK_TABLE_FILE用于分布式训练? 在ModelArts上训练模型如何配置输入输出数据? 在ModelArts上如何提升训练效率并减少与OBS的交互?
创建ModelArts数据清洗任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在
创建标注任务 基于数据集创建标注任务。 dataset.create_label_task(self, task_name=None, task_type=None, **kwargs) 示例代码 示例一:基于图像类型的数据集创建物体检测标注任务。 from modelarts.session
精度调优总体思路 PyTorch大模型训练的精度问题的分析、定位可以参考如下思路: 大模型训练通常使用多机训练,鉴于多机训练复现问题的成本较高,且影响因子较多,建议用户先减少模型层数,使模型能够单机训练,确认单机训练是否也存在精度问题,若存在,则使用下述手段定位精度问题,使得单机精度达标,然后再恢复层数拉起多机训练。
作业状态参考 作业状态如表1所示。 表1 作业状态 状态值 作业状态说明 0 JOBSTAT_UNKNOWN,作业状态未知。 1 JOBSTAT_INIT,作业初始化状态。 2 JOBSTAT_IMAGE_CREATING,作业镜像正在创建。 3 JOBSTAT_IMAGE_FAILED,作业镜像创建失败。
训练作业日志中提示“No module named .*” 用户请按照以下思路进行逐步排查: 检查依赖包是否存在 检查依赖包路径是否能被识别 检查训练作业使用的资源规格是否正确 建议与总结 检查依赖包是否存在 如果依赖包不存在,您可以使用以下两种方式完成依赖包的安装。 方式一(推
将数据预热到SFS Turbo 训练任务开始前可通过数据预热功能将文件元数据和数据内容全部从OBS导入到SFS Turbo高性能文件存储中,数据预热功能的具体操作请参考创建SFS Turbo 和 OBS 之间的联动任务。 在ECS服务器挂载SFS Turbo已经将SFS Turb
服务预测失败 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XX
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池